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We propose a theoretical framework to clearly explain the inaccuracy of Godunov type
schemes applied to the compressible Euler system at low Mach number on a Cartesian
mesh. In particular, we clearly explain why this inaccuracy problem concerns the 2D or
3D geometry and does not concern the 1D geometry. The theoretical arguments are based
on the Hodge decomposition, on the fact that an appropriate well-prepared subspace is
invariant for the linear wave equation and on the notion of first-order modified equation.
This theoretical approach allows to propose a simple modification that can be applied to
any colocated scheme of Godunov type or not in order to define a large class of colocated
schemes accurate at low Mach number on any mesh. It also allows to justify colocated
schemes that are accurate at low Mach number as, for example, the Roe–Turkel and the
AUSM+-up schemes, and to find a link with a colocated incompressible scheme stabilized
with a Brezzi–Pitkäranta type stabilization. Numerical results justify the theoretical argu-
ments proposed in this paper.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

It is sometimes essential to take into account compressibility phenomena even when a flow is at low Mach number.
Moreover, a flow may also be at low Mach number only in a part of the physical domain. In such situations, it is important
to model the flow with the compressible Navier–Stokes system.

Since the compressible Euler system is the compressible Navier–Stokes system without the physical diffusive terms, any
study at low Mach number may firstly concern the compressible Euler system. Conservative finite volume schemes as Godu-
nov type schemes [1–3] are colocated schemes that are well adapted to capture shock waves solution of the compressible
Euler system. Nevertheless, it is well known that Godunov type schemes are not accurate at low Mach number [4–10]. This
inaccuracy is characterized by the creation of spurious pressure and velocity waves that avoid the velocity field to be close to
a divergence-free field. Let us note that this inaccuracy concerns other colocated compressible schemes [11,12]. This inac-
curacy problem comes from a loss of information between the continuous and discrete levels. Indeed, at the continuous level,
the solution of the compressible Euler system converges toward the solution of the incompressible Euler system when the
Mach number goes to zero. Nevertheless, many numerical experiments show that at low Mach number, the numerical solu-
tion given by a colocated compressible scheme may be far from an incompressible numerical solution. In [6,10], the origin of
the inaccuracy is explained by studying the 1D-formulation of Godunov type schemes through a formal asymptotic devel-
opment based on the Mach number. Such studies allow, firstly, to partly find the origin of the inaccuracy and, secondly, to
. All rights reserved.

.

http://dx.doi.org/10.1016/j.jcp.2009.09.044
mailto:stephane.dellacherie@cea.fr
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


S. Dellacherie / Journal of Computational Physics 229 (2010) 978–1016 979
propose modifications of Godunov type schemes to increase the accuracy at low Mach number. For example, in [10], the Roe
scheme with pressure correction is proposed. This scheme consists in modifying the numerical viscosity by adding a pressure
correction on the momentum equation. The Roe–Turkel [4,5,7] and VFRoe–Turkel [8,9] schemes are other modified Godunov
type schemes; the schemes proposed in [6,13] are similar to the Roe–Turkel scheme. All these schemes are built by modi-
fying the numerical diffusion with the Turkel preconditioning matrix [14,15]. In [7–9], the Roe–Turkel and VFRoe–Turkel
schemes are justified with a formal asymptotic development based on the Mach number; idem in [6]. Let us underline that
the Roe–Turkel and VFRoe–Turkel schemes are much more complicated to implement than the Roe scheme with pressure
correction proposed in [10]. All these modified Godunov type schemes give good numerical results. In [12], Liou proposes
a flux splitting type scheme – named AUSM+-up scheme – that is also accurate at low Mach number. In [16–18], other colo-
cated schemes accurate at low Mach number are proposed.

We propose in this work a theoretical framework to clearly explain the inaccuracy of Godunov type schemes at low Mach
number when the mesh is Cartesian. This theoretical framework is based on a Schochet’s result [19], on the Hodge decom-
position, on the fact that an appropriate well-prepared subspace is invariant for the linear wave equation and on the notion
of first-order modified equation. In particular, we show that the inaccuracy problem does not exist in 1D geometry that is to
say only exists in 2D or 3D geometry. Let us note that in [8], the linear wave equation is also studied by Guillard et al. But, our
analysis seems to be more direct and, especially, allows to clearly identify the invariance property that is the key argument.
Our analysis underlines also that the inaccuracy of Godunov type schemes at low Mach number can be explained (at least
partly) with simple linear arguments by only analyzing the linear wave equation. Nevertheless, it is important to note that
the proposed theoretical approach would not have been possible without the previous works of Schochet and Guillard et al.
We also propose a formal approach that is coherent with our theoretical results and we compare this formal approach to
other formal approaches [4,6,8,10] that seem to be less precise. The proposed theoretical approach allows us to conjecture
the existence of a large class of colocated schemes that are accurate at low Mach number on any mesh. This class is named
low Mach X schemes and consists in a simple modification of any X scheme of Godunov type ðX 2 fRoe;VFRoe; . . .gÞ or not (X =
kinetic scheme [20] for example). Numerical results show that the low Mach Roe scheme and the low Mach VFRoe scheme (i.e.
X = Roe and X = VFRoe) are accurate at low Mach number. Let us underline that the proposed theoretical approach justifies the
Roe–Turkel [4,5,7] (or VFRoe–Turkel [8,9]) scheme and the Roe scheme with pressure correction [10] since, in the linear case,
they are respectively similar and identical to the low Mach Godunov scheme. Moreover, it is also possible to prove that the
schemes proposed in [12,16–18] are similar or identical to a low Mach X scheme when the Mach number goes to zero.

The outline of this paper is the following. In Section 2, we recall the derivation of the incompressible Euler system from
the compressible Euler system with formal arguments and with theoretical arguments due to Schochet [19]. Then, we show
how to prove the Schochet’s result in the linear case with simple arguments. This Section 2 allows us to introduce the notion
of well-prepared subspace and a sufficient condition allowing to avoid the creation of spurious pressure and velocity waves.
In Section 3, we propose a simple formal approach showing that the inaccuracy problem only exists in 2D or 3D geometry. In
Section 4, we explain with theoretical arguments why Godunov type schemes are inaccurate only in 2D or 3D geometry. In
Section 5, we propose to apply a simple modification to any colocated X scheme in order to define a large class of low Mach X
schemes accurate at low Mach number. This modification is justified in the case of the linear Godunov scheme. Then, we
show that Roe–Turkel type schemes [7–9] and Godunov type schemes with pressure correction [10] are respectively similar
and identical to the low Mach Godunov scheme in the linear case. We also underline that the AUSM+-up scheme [12] and the
colocated schemes proposed in [16–18] are respectively similar and identical to a low Mach X scheme when the Mach number
goes to zero. Moreover, we formally show that there exists a link between the proposed low Mach Godunov scheme and a
colocated incompressible scheme stabilized with a Brezzi–Pitkäranta type stabilization [21]. In Section 6, we introduce a
more general theoretical framework allowing to propose other colocated schemes that do not create spurious pressure
and velocity waves. Finally, we show in Section 7 numerical results that justify the theoretical arguments proposed in this
paper.
2. Convergence of a compressible flow toward an incompressible flow

We recall the classical formal derivation of the incompressible Euler system from the compressible Euler system [22]. This
recall will allow us to formally introduce the notion of well-prepared initial condition. This will be essential in the sequel.
Then, we recall the theoretical derivation proposed in [19] and we prove the result in the linear case with simple arguments.
This linear study will allow us to, firstly, define in Section 2.4 a sufficient condition to avoid the creation of spurious (pressure
and velocity1) waves, to, secondly, explain in Section 4 the inaccuracy of Godunov type schemes at low Mach number and to,
thirdly, propose in Section 5 a simple curative solution. In Section 6, we will propose a weaker sufficient condition to avoid the
creation of spurious waves.

2.1. Formal derivation

The dimensionless compressible Euler system is given by
1 In the sequel, we write spurious waves for spurious pressure and velocity waves.
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@tqþr � ðquÞ ¼ 0; ðaÞ

@tðquÞ þ r � ðqu� uÞ þ rp

M2 ¼ 0; ðbÞ

@tðqEÞ þ r � ½ðqEþ pÞu� ¼ 0; ðcÞ
E ¼ M2u2

2 þ eðq;pÞ ðdÞ

8>>>>><>>>>>:
ð1Þ
where M is the Mach number (M � 1 at low Mach number). In (1), q;u; p; e and E are respectively the density, the velocity,
the pressure, the internal energy and the total energy. System (1) is closed as soon as the equation of state eðq; pÞ (or pðq; eÞ)
is known. System (1) is equivalent to the non-conservative system
@tqþr � ðquÞ ¼ 0; ðaÞ

q½@tuþ ðu � rÞu� þ
rp

M2 ¼ 0; ðbÞ

@tpþ u � rpþ qa2ðq; pÞr � u ¼ 0 ðcÞ

8>><>>: ð2Þ
for any regular solution. In (2), aðq; pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@p
@q ðq; eÞ þ

p
q2

@p
@e ðq; eÞ

q
is the sound velocity (we admit that eðq; pÞ is such that

aðq; pÞ > 0 for any ðq; pÞ 2 Rþ� � Rþ� ). By supposing that
pðt; xÞ ¼ p0ðt; xÞ þMp1ðt; xÞ þM2p2ðt; xÞ þ � � � ; ðaÞ
uðt; xÞ ¼ u0ðt; xÞ þMu1ðt; xÞ þ � � � ; ðbÞ

(
ð3Þ
by injecting (3) in (2) and by separating the OðM�2Þ and OðM�1Þ terms,2 we formally find that rp0 ¼ 0 and rp1 ¼ 0. Thus, we
can replace (3)(a) with pðt; xÞ ¼ p0ðtÞ þM2p2ðt; xÞ þ � � �. Then, by taking the Oð1Þ terms, we obtain
@tqþr � ðqu0Þ ¼ 0; ðaÞ
q½@tu0 þ ðu0 � rÞu0� þ rp2 ¼ 0; ðbÞ

r � u0 ¼ �
d
dt

p0ðtÞ
qa2ðq; p0Þ

: ðcÞ

8>>>>><>>>>>:
ð4Þ
When we solve system (1) on a bounded domain X with a slipping or periodic boundary condition, we have
R

Xr � u0dx ¼ 0.
Thus, by integrating (4)(c) on X, we find that d

dt p0ðtÞ ¼ 0 since qa2ðq; p0Þ > 0. This means that the pressure is given by
pðt; xÞ ¼ p� þM2p2ðt; xÞ þ � � � where p� is a constant of order 1. Coming back to (4)(c), we obtain that r � u0 ¼ 0. Coupled
to (4)(a), this gives @tqþ u0 � rq ¼ 0. By imposing qðt ¼ 0; xÞ ¼ q�ðxÞ where q� is a strictly positive function such that
Oðkq�kÞ ¼ 1 (k � k is an appropriate norm), we finally ‘‘obtain” that, at low Mach number (i.e. M � 1) and when the initial
conditions are well-prepared in the sense
pðt ¼ 0; xÞ ¼ p� þ OðM
2ÞðxÞ;

uðt ¼ 0; xÞ ¼ ûðxÞ þ OðMÞðxÞ

(
with

p� ¼ Cst
p ;

r � û ¼ 0

(
ð5Þ
(Cst
p is a strictly positive constant of order 1; kûk is also of order 1), the solution ðq;u; pÞ of compressible Euler system (1) is

close to the solution ðq;u; pÞ of the incompressible Euler system with variable density
@tqþ u � rq ¼ 0;
qðt ¼ 0; xÞ ¼ q�ðxÞ;
r � u ¼ 0;

@tuþ ðu � rÞuþ
rP
q�
¼ 0;

uðt ¼ 0; xÞ ¼ buðxÞ;
p ¼ p�:

8>>>>>>>>>><>>>>>>>>>>:

2.2. Theoretical derivation in the non-linear barotropic case

We now recall the convergence result proposed by Schochet [19] in the barotropic case. The dimensionless barotropic
Euler system is given by
@tqþr � ðquÞ ¼ 0;

@tðquÞ þ r � ðqu� uÞ þ rpðqÞ
M2 ¼ 0:

8<: ð6Þ
ll the paper, the notation OðaÞ means of the order of a.
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In (6), we suppose that pðqÞ is a strictly increasing function from Rþ� to Rþ� . Thus, the sound velocity aðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
p0ðqÞ

p
is strictly

positive. By defining the variable r with
qðt; xÞ :¼ q� 1þM
a�

rðt; xÞ
� �

ð7Þ
(q� ¼ Cst
q where Cst

q is a strictly positive constant of order 1 and a� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ðq�Þ

p
), for any regular solution, system (6) is equiv-

alent to
@tqþHðqÞ þ
L
M
ðqÞ ¼ 0 ð8Þ
where
q ¼
r

u

� �
; ðaÞ

HðqÞ ¼
u � rr

ðu � rÞu

� �
:¼ ðu � rÞq; ðbÞ

LðqÞ ¼

ða� þMrÞr � u
p0 q� 1þ M

a�
r

� �h i
a� 1þ M

a�
r

� � rr

0BBB@
1CCCA: ðcÞ

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð9Þ
The operators H and L=M are respectively the convective operator – whose time scale is of order 1 – and the acoustic oper-
ator – whose time scale is of order M. To simplify the analysis, Schochet supposes that barotropic Euler system (8) is solved
with periodic boundary conditions. Thus, X is the torus Td :¼ ½a1; b1� � � � � � ½ad; bd� in Rd ðd 2 f1;2;3gÞ. We now define
E ¼ q :¼
r

u

� �
2 ðL2ðTdÞÞ1þd such that rr ¼ 0 and r � u ¼ 0

	 

;

E? ¼ q :¼
r

u

� �
2 ðL2ðTdÞÞ1þd such that

R
Td rdx ¼ 0 and 9/ 2 H1ðTdÞ; u ¼ r/

	 

8>>><>>>: � �	 

where the Hilbert space ðL2ðTdÞÞ1þd :¼ q :¼ r
u such that

R
Td r2dxþ

R
Td kuk2dx < þ1 is provided with the classical in-

ner product hq1; q2i ¼
R

Td q1q2dx. We also recall the Hodge decomposition [23,24]:

Lemma 2.1.
E 	 E? ¼ ðL2ðTdÞÞ1þd and E ? E?:
In other words, any q 2 ðL2ðTdÞÞ1þd can be decomposed into
q ¼ bq þ q? where ðq̂; q?Þ 2 E � E? ð10Þ
and this decomposition – named Hodge decomposition – is unique.

The Hodge decomposition (10) is also known as the Leray or Helmholtz decomposition. In the sequel, we define the Hodge
projection P with Pq :¼ bq.

A simplified version of the result proposed by Schochet and applied to (8) (cf. theorems 2.1 and 3.1 in [19]) may be writ-
ten in the following way:

Theorem 2.1. Let qðt; xÞ be solution of
@tqþHðqÞ þ
L
M
ðqÞ ¼ 0;

qðt ¼ 0; xÞ ¼ q0ðxÞ

8<: ð11Þ
and let ~qðt; xÞ be solution of
@teq þ PHðeqÞ ¼ 0;eqðt ¼ 0; xÞ ¼ Pq0ðxÞ

	
ð12Þ
on X ¼ Td2f1;2;3g. Then:
kq� Pqkðt ¼ 0Þ ¼ OðMÞ;
M � 1

	
) kq� ~qkðt P 0Þ ¼ OðMÞ: ð13Þ
Let us note that estimate (13) is also written in [22] (see (2.127) in [22]). It is not difficult to verify that system (12) is
equivalent to the incompressible Euler system with constant density
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r � u ¼ 0;
@tuþ ðu � rÞuþrP ¼ 0

	
and

rðt P 0; xÞ ¼ Cst ;

r � uðt ¼ 0; xÞ ¼ 0:

(

Thus, Theorem 2.1 means that when the initial conditions are well-prepared in the sense
kq� Pqjjðt ¼ 0Þ ¼ OðMÞ; ð14Þ

the solution qðt; xÞ of barotropic Euler system (11) is close to the solution ~q of incompressible Euler system (12). Due to these
statements, we will also consider E as the well-prepared subspace. Moreover, by using (7) and by supposing that the equation
of state p ¼ pðqÞ is enough regular, we easily verify that condition (14) is equivalent to the condition
qðt ¼ 0; xÞ ¼ q� þ OðM
2ÞðxÞ;

pðt ¼ 0; xÞ ¼ p� þ OðM2ÞðxÞ;
uðt ¼ 0; xÞ ¼ buðxÞ þ OðMÞðxÞ

8><>: with

q� ¼ Cst
q ;

p� ¼ pðCst
q Þ;

r � bu ¼ 0:

8>><>>: ð15Þ
Condition (15) is identical to condition (5) except that there is a condition on the density in (15): this difference comes
from the fact that (5) and (15) concern, respectively compressible Euler system (1) (p ¼ pðq; eÞ in this case) and barotropic
Euler system (6) (p ¼ pðqÞ in this case, which implies that the asymptotic expansions of q and p are necessarily linked).

2.3. Theoretical derivation in the linear case

The linear version of (11) is given by
@tqþ Hqþ L
M

q ¼ 0;

qðt ¼ 0; xÞ ¼ q0ðxÞ

8<: ð16Þ
where
q ¼
r

u

� �
;

Hq ¼
u� � rr

ðu� � rÞu

� �
:¼ ðu� � rÞq;

Lq ¼ a�
r � u
rr

� �
:

8>>>>>>>><>>>>>>>>:
ð17Þ
In (17), the velocity field u� is a constant field in time and space. System (16) may also be deduced from a linearization of
compressible Euler system (1) by defining r with
pðt; xÞ :¼ q�a
2
� 1þM

a�
rðt; xÞ

� �
ð18Þ
instead of (7). Thus, in the sequel, r will be considered as a pressure perturbation rather than a density perturbation. Linear
equation (16) was also studied in [8] in the Fourier space. Here, we study linear equation (16) in the physical space to obtain
the linear version of Theorem 2.1. We use simple arguments based on the Hilbertian theory of linear operators. The proposed
analysis seems to be more direct than the one proposed in [8] and, especially, allows to clearly identify the invariance prop-
erty that will be the key argument to explain the inaccuracy of 2D or 3D Godunov type schemes at low Mach number in
Section 4 and to propose a curative solution in Section 5. Let us now define the following energies
E :¼ kqk2 ¼ total energy;

Einc :¼ kq̂k2 ¼ incompressible energy;

Eac :¼ kq?k2 ¼ acoustic ðor compressibleÞ energy:

8><>:

Of course, E ¼ Einc þ Eac since E ? E?. The linear version of Theorem 2.1 is given by:

Proposition 2.1. Let qðt; xÞ be solution of
@tqþ Hqþ L
M

q ¼ 0;

qðt ¼ 0; xÞ ¼ q0ðxÞ;

8<: ð19Þ
let eqðt; xÞ be solution of
@teq þ Heq ¼ 0;eqðt ¼ 0; xÞ ¼ Pq0ðxÞ

	
ð20Þ
on X ¼ Td2f1;2;3g and let us define the Hodge decomposition ðbq; q?Þ 2 E � E? of q. Then, bq ¼ eq and q? is solution of (19) with the
initial condition q0?. Moreover, we have Eincðt P 0Þ ¼ Eincðt ¼ 0Þ and Eacðt P 0Þ ¼ Eacðt ¼ 0Þ. This allows to write that
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kq� Pqkðt ¼ 0Þ ¼ OðMÞ ) kq� eqkðt P 0Þ ¼ OðMÞ: ð21Þ
Of course, Proposition 2.1 is a corollary of Theorem 2.1 (note that H~q ¼ PH~q and that Hð~qÞ – PHð~qÞ). Nevertheless, since
(19) is a constant-linear equation, we can propose a simple proof that will be useful to understand the inaccuracy of Godunov
type schemes at low Mach number in Section 4 and to propose a curative solution in Section 5. This proof is based on two
basic properties satisfied by linear equation (19). The first one is a classical energy conservation property:

Lemma 2.2. Let qðt; xÞ be solution of (19) on X ¼ Td2f1;2;3g. Then:
Eðt P 0Þ ¼ Eðt ¼ 0Þ:
The second one is an invariant property in the sense that E and E? are invariant subspaces for Partial Differential Equation
(PDE) (16). This property is central to understand the analysis proposed in Sections 4 and 5:

Lemma 2.3. Let qðt; xÞ be solution of (19) on X ¼ Td2f1;2;3g. Then:

(1) 8q0 2 E : qðt P 0Þ 2 E;
(2) 8q0 2 E? : qðt P 0Þ 2 E?.

Remark. Let us remark that (20) is equivalent to the system
@tuþ ðu� � rÞu ¼ 0 þ rðt P 0; xÞ ¼ Cst ;

r � uðt ¼ 0; xÞ ¼ 0:

(
ð22Þ
System (22) is ‘‘incompressible” since the invariance of E (see point 1 of Lemma 2.3) means that
@tuþ ðu� � rÞu ¼ 0;
r � uðt ¼ 0; xÞ ¼ 0

	
) r � uðt P 0; xÞ ¼ 0: ð23Þ
Let us note that (23) may be verified via a direct calculation on the PDE in (23).

Proof of Proposition 2.1: Let q0 ¼ q̂0 þ q0? be the Hodge decomposition of q0 and let q1 and q2 be two solutions of (19) with
the respective initial conditions q1ðt ¼ 0; xÞ ¼ q̂0ðxÞ and q2ðt ¼ 0; xÞ ¼ q0?ðxÞ. By using Lemma 2.3, we obtain that
q1ðt P 0Þ 2 E and q2ðt P 0Þ 2 E?. Moreover, by linearity of H and L, we find that q ¼ q1 þ q2. Thus, by unicity of the Hodge
decomposition (10), we conclude that q̂ ¼ q1 and q? ¼ q2. And since E ¼ KerL, we find that ~q ¼ q̂. We conclude the proof
by using Lemma 2.2. h

It remains to prove Lemmas 2.2 and 2.3:

Proof of Lemma 2.2: We have d
dt jjqjj

2 ¼ 2hq; @tqi ¼ �2hq;Hqi � 2hq; L
M qi. We have also
2hq;Hqi ¼
Z

Td
u� � rkqk2dx ¼

Z
Td
r � ðkqk2u�Þdx�

Z
Td
kqk2r � u�dx ¼

Z
@Td
kqk2u� � nds�

Z
Td
kqk2r � u�dx

¼ 0�
Z

Td
kqk2r � u�dx ¼ 0 ðr � u� ¼ 0 since u� ¼ CstÞ:
Moreover hq; Lqi ¼ a�ð
R

Td rr � udxþ
R

Td u � rrdxÞ ¼ a�
R
@Td ru � nds ¼ 0. h

The proof of Lemma 2.3 is based on the following lemma whose proof is in Appendix A:

Lemma 2.4. Let A be a linear isometry on a Hilbert space H and let E be a vector subspace of H. Then:
AE ¼ E ) AE? 
 E?:
Proof of Lemma 2.3: Let us define the linear application
AðH;L=MÞ
t :

ðL2ðTdÞÞ1þd ! ðL2ðTdÞÞ1þd
;

q0#AðH;L=MÞ
t q0 :¼ qðt; �Þ

(
ð24Þ
where q is solution of (19) on X ¼ Td. Lemma 2.2 allows us to write thatAðH;L=MÞ
t is an isometry. Thus, by using Lemma 2.4, we

just have to prove that AðH;L=MÞ
t is surjective on E to prove that E? is invariant. Since u� is a constant velocity field in time and

space, we haveAðH;L=MÞ
t ¼ T H

t � A
ð0;L=MÞ
t where T H

t is the application associated to the linear transformation qðt; xÞ#qðt; x� u�tÞ.
Moreover, Að0;L=MÞ

t is the identity application on E since E ¼ KerL. This means that AðH;L=MÞ
t ¼ T H

t on E. Thus, we obtain that
AðH;L=MÞ

t is surjective on E by noting that T H
t is surjective on E. Let us remark that AðH;L=MÞ

t – T H
t � A

ð0;L=MÞ
t when we have only

r � u�ðxÞ ¼ 0. That is why we impose u� ¼ Cst in (17). h
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2.4. A sufficient condition to avoid the creation of spurious waves at low Mach number

Estimate (21) – that characterizes the convergence of a compressible flow toward an incompressible flow in the linear
case – is a direct consequence of Lemma 2.1 (energy conservation property) and of Lemma 2.3 (invariance property of
the well-prepared subspace E and of the acoustic subspace E?). Since ~q ¼ Pq in the case of linear equation (19), estimate
(21) may also be written with
kq� Pqkðt ¼ 0Þ ¼ OðMÞ ) kq� Pqjjðt P 0Þ ¼ OðMÞ: ð25Þ
If we just want to prove estimate (25) without using the property ~q ¼ Pq, only the well-posedness of linear equation (19)
and the invariance of E are important. Indeed, we have the following result:

Theorem 2.2. Let qðt; xÞ be solution of the linear PDE
@tqþ F xq ¼ 0;
qðt ¼ 0Þ ¼ q0

	
ð26Þ
supposed to be well-posed on L1ð½0;þ1½; ðL2ðTdÞÞ1þdÞ where F x is a linear spatial differential operator. Then:

(1) the solution qðt; xÞ satisfies
kq� Pqkðt ¼ 0Þ ¼ OðMÞ ) kq� ~qkðt P 0Þ ¼ OðMÞ ð27Þ
where ~qðt; xÞ is solution of (26) with the initial condition ~qðt ¼ 0Þ ¼ Pq0. Nevertheless, we do not have a priori
kq� Pqkðt P 0Þ ¼ OðMÞ;

(2) when F x is such that
8q0 2 E : qðt P 0Þ 2 E; ð28Þ
the solution qðt; xÞ satisfies (27) and
kq� Pqkðt ¼ 0Þ ¼ OðMÞ ) kq� Pqkðt P 0Þ ¼ OðMÞ: ð29Þ
Thus, we have also k~q� Pqkðt P 0Þ ¼ OðMÞ.

The second point of Theorem 2.2 is important since estimate (29) means that qðt P 0Þ is almost in the well-prepared sub-
space E when it is the case at t ¼ 0. In other words, under sufficient condition (28) and when the initial conditions are well-
prepared, PDE (26) does not create any spurious wave. At the opposite, the first point of Theorem 2.2 is not really important
since estimate (27) does not mean that qðt P 0Þ is almost in the well-prepared subspace E. This first point is only mentioned
to underline the importance of the invariance of E. Moreover, we underline the fact that we do not impose that the energy
EðtÞ is a constant or a decreasing function (nevertheless, Eðt P 0Þ is bounded since (26) is supposed to be well-posed). Let us
also underline that ~q – Pq a priori. We would have ~q ¼ Pq by imposing also the invariance of E?. At last, when F x ¼ H þ L

M,
(29) implies (21) since we have in that case ~q ¼ Pq (E? is invariant) and F xjE ¼ H (E ¼ KerL). Of course, when F x ¼ L

M, we haveeq ¼ Pq ¼ Pq0 and (29) implies
kq� Pqkðt ¼ 0Þ ¼ OðMÞ ) kq� Pq0kðt P 0Þ ¼ OðMÞ: ð30Þ
Let us now define a non-linear X scheme of Godunov type (X = Roe [1] for example) or not (X = kinetic scheme [20] for
example) applied to compressible Euler system (1) or to barotropic Euler system (6) on any mesh. Theorem 2.2 gives us a
simple and clear theoretical framework:

� firstly to understand (at least partly) on a Cartesian mesh the origin of the inaccuracy of the non-linear X scheme at low
Mach number by analyzing the first-order modified equation
@tqþ F X;L=M
x q ¼ 0;

qðt ¼ 0Þ ¼ q0

(
ð31Þ
associated to the X scheme applied to the linear wave equation
@tqþ
L
M

q ¼ 0;

qðt ¼ 0Þ ¼ q0:

8<: ð32Þ
Indeed, estimate (29) is a necessary condition to be accurate at low Mach number. And, if sufficient condition (28) is not
satisfied for (31), estimate (29) may not be satisfied, which means that it may exist spurious waves characterized by the esti-
mate kq� PqkðsacÞ  OðMÞ; sac being an acoustic time scale of order OðMÞ. For example, we show in Section 4 that condition
(28) is not satisfied in 2D and 3D when F x :¼ FGodunov ;L=M

x (see point 2 of Lemma 4.2) and that there exists 2D and 3D initial
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conditions which create spurious waves (see point 2 of Proposition 4.1). As a consequence, any non-linear Godunov scheme
cannot be accurate at low Mach number. Let us underline that condition (28) concerns Eq. (31) that is linear. This means that
the origin of the inaccuracy of non-linear Godunov type schemes at low Mach number can be explained (at least partly) on a
Cartesian mesh with linear arguments and without any convection term (indeed, H ¼ 0 in FGodunov ;L=M

x );
� secondly to propose a new non-linear X scheme – named low Mach X scheme in Section 5 (see Conjecture 5.1) – in such a

way condition (28) is satisfied for the new first-order modified equation
@tqþ F low Mach X;L=M
x q ¼ 0;

qðt ¼ 0Þ ¼ q0

(
ð33Þ
associated to this low Mach X scheme applied to (32), although (28) is not satisfied for (31). When X is a Godunov type
scheme, we propose in Section 5 a simple modification of the X scheme to obtain such an operator F low Mach X;L=M

x . We empha-
size that this modification can be applied to any colocated X scheme and on any mesh (see Conjecture 5.1). Numerical results
proposed in Section 7 show that these low Mach X schemes are stable and accurate at low Mach number when X = Roe [1] and
X = VFRoe [2,3] (see also Section 5.2 for a stability analysis of the linear low Mach Godunov scheme). Moreover, we show in
Section 5.5 that other colocated schemes of Godunov type [6–10,16–18] or not [12] that are accurate at low Mach number
are similar or identical to a low Mach X scheme when the Mach number goes to zero.

Proof of Theorem 2.2: Estimate (27) is a direct consequence of the well-posedness of PDE (26). Let us now define �qðt; xÞ solu-
tion of (26) with the initial condition qðt ¼ 0; xÞ :¼ q0 � Pq0. By linearity, we have q ¼ eq þ q. Moreover
kq� Pqk ¼ k~q� P~qþ �q� P�qk ¼ k�q� P�qk
by using the invariance property (28). Then, we have
kq� Pqj 6 k�qk
since ð1� PÞ is an orthogonal projection. We conclude the proof by using again the well-posedness of (26) which implies
that k�qk ¼ OðMÞ when k�q0k :¼ kq0 � Pq0k ¼ OðMÞ. h

2.5. Two additional conditions to obtain a good colocated low Mach scheme

Estimate (29) means that PDE (33) does not create any spurious wave. Nevertheless, it remains to verify a posteriori that:

� firstly, the new X scheme – whose first-order modified equation is given by (33) – is obtained from the original X scheme
in a simple way on any mesh;

� secondly, the energy in the well-prepared subspace E (i.e. the incompressible energy) is not diffused with a time scale of
order M. Indeed, to be accurate at low Mach number, we need to control the energy in E? to avoid the creation of spurious
waves through estimate (29) but we need also to control the dissipation of the incompressible energy in the well-prepared
subspace E.

The low Mach X schemes proposed in Conjecture 5.1 satisfy these two additional conditions. We will propose in Section 5.6
two other schemes whose first-order modified equations satisfy sufficient condition (28) but that do not satisfy the first or
the second additional condition. In Section 6, we will also propose a scheme whose first-order modified equation satisfies a
sufficient condition that is weaker than (28) but that does not satisfy the first additional condition.
3. Formal analysis of the Roe scheme at low Mach number on a Cartesian mesh

Some authors tried to give a formal analysis of the inaccuracy of Godunov type schemes at low Mach number [4,6–8,10].
All these formal analysis use an asymptotic expansion based on the Mach number. Although the formal analysis in [4,6,10]
allows to find the origin of the inaccuracy, its arguments seem to be inexact since they concern the 1D-case that, in fact, does
not suffer of any inaccuracy at low Mach number as it is underlined in [5] (see p. 362 in [5]). We will justify this assertion
with formal arguments in this section and with theoretical arguments in Section 4. In [8], the formal analysis is more accu-
rate. Nevertheless, the importance of the space dimension is not clearly underlined since the inaccuracy of the Godunov type
scheme is explained with an analysis of a 1D-Riemann problem applied to a perfect gas at low Mach number. In [7], the inac-
curacy is studied in the case of the Roe scheme [1] with 2D arguments (see lemma 3.1 and proposition 3.1 p. 72-73 in [7]).
Here, we will propose a formal analysis in the case of the 2D Roe scheme when the mesh is Cartesian. This analysis is more
accurate than the one proposed in [4,6,10] and is more simple than the one proposed in [7,8]. Let us note that the particular
case of triangular (or tetrahedral) mesh is mentioned in Section 5.8. Thus, in this section, we firstly recall the formal approach
proposed in [6,10] and we clearly underline its defaults. Secondly, we propose a formal approach that clearly takes into ac-
count the space dimension and we also discuss about the 1D-formal analysis proposed in [4,8]. This formal approach may be
seen as an introduction to the theoretical approach proposed in Section 4.
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In the sequel, the mesh is a 2D Cartesian mesh. The subscript ði; jÞ defines the center of each cell of the Cartesian mesh,
ði� 1=2; jÞ and ði; j� 1=2Þ defining the interfaces of the cell (i, j). Moreover, Dxk is the space step in the direction xk

ðk 2 f1;2gÞ. The formal arguments proposed below would be identical for a 3D Cartesian mesh.

3.1. A first formal approach

We show in this subsection why the argument proposed in [6,10] to justify the inaccuracy of Godunov type schemes is
not correct although it allows to find the origin of the inaccuracy. The Roe scheme [1] applied to compressible Euler system
(1) (written with physical dimensions) on a 2D Cartesian mesh is given by
d
dt Ui;j þ

F1;iþ1=2;j � F1;i�1=2;j

Dx1
þ F2;i;jþ1=2 � F2;i;j�1=2

Dx2
¼ 0;

Ui;jðt ¼ 0Þ ¼ U0
i;j

8><>: ð34Þ
where
F1;iþ1=2;j ¼
F 1ðUi;jÞ þ F 1ðUiþ1;jÞ

2
� 1

2
jA1ðUiþ1=2;jÞjðUiþ1;j � Ui;jÞ; ðaÞ

F2;i;jþ1=2 ¼
F 2ðUi;jÞ þ F 2ðUi;jþ1Þ

2
� 1

2
jA2ðUi;jþ1=2ÞjðUi;jþ1 � Ui;jÞ: ðbÞ

8>><>>: ð35Þ
In (34) and (35), U :¼ ðq;qu;qEÞT with u ¼ ðukÞk¼1;...;d 2 Rd;F kðUÞ is the flux of (1) in the direction k and
AkðUÞ ¼ DF k

DU ðUÞðk 2 f1;2gÞ. The quantities Uiþ1=2;j and Ui;jþ1=2 are defined with the Roe average. This average is given in [1]
for a perfect gas and in [25] for any equation of state pðq; eÞ (which admits an entropy). Nevertheless, as there are no shock
waves at low Mach number, we do not need to satisfy any property related, for example, to the preservation of a stationary
shock wave (this is a property that justifies the choice of the Roe average for compressible flows). Thus, for the sake of sim-
plicity, we can suppose for example that Uiþ1=2;j :¼ ðUi;j þ Uiþ1;jÞ=2 and Ui;jþ1=2 :¼ ðUi;j þ Ui;jþ1Þ=2. This choice does not change
formulae (35) and formulae (37) and (38) below. The important point is just to note that we have
OðkUiþ1=2;jkÞ ¼ OðkUi;jkÞ ¼ OðkUiþ1;jkÞ (k � k is the l2-norm) for any choice of the average because of the regularity of the solu-
tion at low Mach number. This means that we can define a global Mach number M such that
8ði; jÞ : O kuiþ1=2;jk
aiþ1=2;j

� �
¼ O kui;jþ1=2k

ai;jþ1=2

� �
¼ O kui;jk

ai;j

� �
¼ M � 1: ð36Þ
We will use this property below to analyse the different orders of magnitude of the Roe scheme. When the flow is subsonic
(i.e. kuiþ1=2;jk 6 aiþ1=2;j), formula (35)(a) may be written with [5]
u1;iþ1=2;j > 0 : F1;iþ1=2;j ¼ F 1ðUiÞ þ ðu1 � aÞiþ1=2;j � ðDUÞ�iþ1=2;j;

u1;iþ1=2;j 6 0 : F1;iþ1=2;j ¼ F 1ðUiþ1Þ � ðu1 þ aÞiþ1=2;j � ðDUÞþiþ1=2;j

(
ð37Þ
knowing that
ðDUÞ�iþ1=2;j :¼ ½p� � qa½u1�
2a2

� �
iþ1=2;j

�

1
u1 � a

u2

H� u1a

0BBB@
1CCCA

iþ1=2;j

ð38Þ
with ½f �iþ1=2;j :¼ fiþ1;j � fi;j. In (38), H :¼ Eþ p=q is the total enthalpy. Of course, we have symmetric formulae for F2;i;jþ1=2. Let us
now define piþ1=2 :¼ ðqu2 þ pÞiþ1=2 � ðquÞiþ1=2 � uiþ1=2. We deduce from (37) that for any 1D subsonic flow
uiþ1=2 > 0 : piþ1=2 ¼
pi þ piþ1

2
� qa½u�

2

� �
iþ1=2

þ qiuiðui � uiþ1=2Þ �
juj
2a
ð½p� � qa½u�Þ

� �
iþ1=2

;

uiþ1=2 6 0 : piþ1=2 ¼
pi þ piþ1

2
� qa½u�

2

� �
iþ1=2

þ qiþ1uiþ1ðuiþ1 � uiþ1=2Þ �
juj
2a
ð½p� þ qa½u�Þ

� �
iþ1=2

:

8>>><>>>: ð39Þ

� � � � � �

Thus, by noting Miþ1=2 :¼ juj

a iþ1=2
and by replacing

qa½u�
2 iþ1=2

with
qjuj½u�

2M iþ1=2
, we obtain
piþ1=2 ¼
pi þ piþ1

2
� qjuj½u�

2M

� �
iþ1=2

þ � � � : ð40Þ
By using (36), we can say that Miþ1=2 � 1. In [10], the inaccuracy of the Roe scheme is explained by noting that
qjuj½u�
2M

� �
iþ1=2

! þ1 when Miþ1=2 ! 0þ: ð41Þ
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Indeed, (41) seems to show that the pressure piþ1=2 deviates dramatically from the arithmetic average of pi and piþ1 when
Miþ1=2 ! 0þ. In [6], the proposed argument is equivalent to (41) (see (12) in [6]). Thus, it is proposed in [10] to correct the Roe
scheme by replacing fluxes (35) in (34) with the corrected fluxes
Fcorrected
1;iþ1=2;j ¼ F1;iþ1=2;j þ

ðqaÞiþ1=2;j

2

0
½u1�
0
0

0BBB@
1CCCA

iþ1=2;j

;

Fcorrected
2;i;jþ1=2 ¼ F2;i;jþ1=2 þ

ðqaÞi;jþ1=2

2

0
0
½u2�
0

0BBB@
1CCCA

i;jþ1=2

:

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

ð42Þ
The Roe scheme with pressure correction (42) gives good numerical results. Let us note that the pressure correction could
be applied to any Godunov type scheme. Nevertheless, (41) is not correct and, thus, does not justify the correction (42): in-
deed, (41) does not take into account the fact that jqauj � p at low Mach number since OðpÞ ¼ Oðqa2Þ. Thus, (41) should be
replaced by
qjuj½u�
2M

� �
iþ1=2

� pi þ piþ1

2
when Miþ1=2 ! 0þ: ð43Þ
Moreover, the previous formal analysis (partly inspired from [6,10]) does not take into account the space dimension since
it is an 1D analysis (1D arguments are also used in [4,8,26]): we will see in the sequel that the space dimension is essential to
analyse Godunov type schemes at low Mach number from a formal or theoretical point of view.

3.2. A more precise formal approach: importance of the space dimension

We propose in this subsection another formal approach that is more precise than the one proposed in [6,10]. This formal
approach is similar to the one proposed in [4,8]. Nevertheless, it is more precise since we clearly underline that the space
dimension is essential to formally analyse the Roe scheme, which is not the case in [4,8] (as in [6,10], 1D arguments are used
in [4,8]). Moreover, the proposed formal analysis is more simple and general than the one proposed in [8]. Indeed, firstly, the
formal approach in [8] is based on an explicit resolution of a 1D-Riemann problem and, secondly, it supposes that the fluid is
a perfect gas. Here, we do not solve such 1D-Riemann problem and the arguments are correct for any admissible equation of
state. The dimensionless version of (39) is given by
uiþ1=2 > 0 : piþ1=2 ¼
pi þ piþ1

2
�M

qa½u�
2

� �
iþ1=2

þM2qiuiðui � uiþ1=2Þ �M
juj
2a
ð½p� �Mqa½u�Þ

� �
iþ1=2

uiþ1=2 6 0 : piþ1=2 ¼
pi þ piþ1

2
�M

qa½u�
2

� �
iþ1=2

þM2qiþ1uiþ1ðuiþ1 � uiþ1=2Þ �M
juj
2a
ð½p� þMqa½u�Þ

� �
iþ1=2

8>>><>>>: ð44Þ
with now piþ1=2 :¼ ðM2qu2 þ pÞiþ1=2 �M2ðquÞiþ1=2 � uiþ1=2. Thus, at low Mach number, we have
piþ1=2 ¼
pi þ piþ1

2
�M

qa½u�
2

� �
iþ1=2

�M
juj
2a
½p�

� �
iþ1=2

þOðM2DxÞ: ð45Þ
Let us note that (45) is compatible with (43) and not with (41) (we emphasize that u in (45) is dimensionless which is not
the case in (41) and (43); on the other hand, the Mach number M in (45) is of the same order as the Mach number Miþ1=2 in
(41) and (43) because of (36)). Let us suppose that the initial conditions are well-prepared in the sense of (5). Thus, we have
M juj

2a ½p�
� �

iþ1=2
¼ OðM3DxÞ. Moreover, in 1D, r � û ¼ 0 is equivalent to buðxÞ ¼ Cst: in that case, ½u�iþ1=2 ¼ OðMDxÞ. This means

that
M
qa½u�

2

� �
iþ1=2

¼ OðM2DxÞ: ð46Þ
Thus, (45) coupled to (5) means that
piþ1=2ðt ¼ 0Þ ¼ p� þ OðM
2DxÞ þ OðM2Þ: ð47Þ
Then, because of the pressure gradient rp=M2 in momentum equation (1)(b), the 1D velocity field should be such that
d
dt

uiðtÞ ¼ OðDxÞ þ Oð1Þ ð48Þ
where OðDxÞ þ Oð1Þ is a (discrete) non-constant field. Then, we have
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uiðDtÞ ¼ bui þOðMÞ þ Dt½OðDxÞ þ Oð1Þ� þ OðDt2Þ
when Dt � 1. And when Dt ¼ sac with sac ¼ OðMÞ (sac is an acoustic time scale), we may formally write that
uiðsacÞ ¼ ûi þOðMDxÞ þ OðMÞ ð49Þ
where OðMDxÞ þ OðMÞ is a (discrete) non-constant velocity field. In that case, the 1D pressure field should be such that
piðsacÞ ¼ p� þ OðM2DxÞ þ OðM2Þ ð50Þ
by using (2)(c). In [4], it is abruptly written that in1D, the pressure field satisfies piðt > 0Þ ¼ p � þOðMÞ (see Eq. (30) in [4]):
this estimate is in contradiction with (50). In [8], the analysis of the 1D-Riemann problem for a perfect gas leads to an equa-
tion similar to (45) (see Eq. (43) in [8]). Nevertheless, as in [4], it is deduced from the 1D analysis that ‘‘Godunov solver con-
tains, after one time step, acoustic pressure waves of order M that are much larger than the pressure fluctuations due to the
incompressible component” (cf. p. 666 in [8]). Numerical results are also proposed in 1D to justify this assertion (cf. Fig. 4
p. 667 in [8]). These numerical results are correct. Nevertheless, they cannot justify the existence of the inaccuracy of Godu-
nov type schemes at low Mach number. Indeed, the initial condition used to obtain the 1D numerical results in [8] is not
well-prepared since the initial velocity field has a fluctuation of order 1 and not of order M. As a consequence, in (45),
M qa½u�

2

� �
iþ1=2

¼ OðMDxÞ instead of (46). In that case, estimate (50) induced by any 1D well-prepared initial condition should

be replaced by the estimate piðsacÞ ¼ p � þOðMDxÞ (see below the 2D case for the details). In fact, the formal analysis in [4,8]
cannot be satisfactory because, as in [6,10], they use 1D arguments (an 1D argument is also used in [26]: see estimate (11) in
[26]). As a consequence, any divergence-free field is trivial and it is impossible to clearly understand the origin of the inac-
curacy of Godunov type schemes at low Mach number. Thus, even for a formal analysis, we have to take into account the
dimension of the space to analyse the inaccuracy of Godunov type schemes at low Mach number.

The 2D version of (45) is given by
piþ1=2;j ¼
pi;j þ piþ1;j

2
�M

qa½u1�
2

� �
iþ1=2;j

�M
ju1j
2a
½p�

� �
iþ1=2;j

þOðM2DxÞ;

pi;jþ1=2 ¼
pi;j þ pi;jþ1

2
�M

qa½u2�
2

� �
i;jþ1=2

�M
ju2j
2a
½p�

� �
i;jþ1=2

þOðM2DxÞ

8>>><>>>: ð51Þ
(for the sake of simplicity, we choose Dx1 ¼ Dx2 :¼ Dx) with
piþ1=2;j :¼ ðM2qu2
1 þ pÞiþ1=2;j �M2ðqu1Þiþ1=2;j � u1;iþ1=2;j;

pi;jþ1=2 :¼ ðM2qu2
2 þ pÞi;jþ1=2 �M2ðqu2Þi;jþ1=2 � u2;i;jþ1=2:

(

In 2D, r � bu ¼ 0 is not equivalent to ûðxÞ ¼ Cst . Thus, when the initial conditions are well-prepared in the sense of (5), we
have a priori
M
qa½u1�

2

� �
iþ1=2;j

¼ OðMDxÞ;

M
qa½u2�

2

� �
i;jþ1=2

¼ OðMDxÞ:

8>>><>>>: ð52Þ
We deduce from (51) and (52) that the 2D version of (47) should be such that
piþ1=2;jðt ¼ 0Þ ¼ p� þ OðMDxÞ þ OðM2Þ; ðaÞ
pi;jþ1=2ðt ¼ 0Þ ¼ p� þ OðMDxÞ þ OðM2Þ ðbÞ:

(
ð53Þ
Thus, the 2D version of the 1D estimate (48) is given by
d
dt

ui;jðtÞ ¼ O
Dx
M

� �
þOð1Þ
where O Dx
M

� �
þOð1Þ is a (discrete) non-divergence-free field. As a consequence, the 2D version of the 1D estimate (49) is now

given by
ui;jðsacÞ ¼ ûi;j þOðDxÞ þ OðMÞ ð54Þ
(with again sac ¼ OðMÞ) where OðDxÞ þ OðMÞ is a non-divergence-free field, although ui;jðt ¼ 0Þ ¼ ûi;j þOðMÞ. In that case,
the 2D pressure field should be
pi;jðsacÞ ¼ p� þ OðMDxÞ þ OðM2Þ ð55Þ
although pi;jðt ¼ 0Þ ¼ p� þ OðM2Þ. The velocity field OðDxÞ in (54) and the pressure perturbation OðMDxÞ in (55) are spurious
waves that make impossible the convergence when M ! 0 (with a given Dx) of a 2D (or 3D) discrete compressible solution
toward a 2D (or 3D) discrete incompressible solution when compressible Euler system (1) is discretized with a Roe scheme.
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Indeed, Theorem 2.1 and Proposition 2.1 underline that a compressible flow converges toward an incompressible flow at low
Mach number if and only if the initial conditions are well-prepared in the sense of (5). More precisely, any Oð1Þ (or OðDxÞ at
the discrete level) velocity fluctuation that is a non-divergence-free field induces a OðMÞ (or OðMDxÞ) pressure fluctuation,
and vice versa. On the other hand, estimates (54) and (55) seem to say that when the mesh is such that Dx ¼ OðMÞ, there are
no spurious waves: of course, the condition Dx ¼ OðMÞ is impracticable in 2D (or 3D) geometry when M ! 0. In a way, we
can say that the compressible Godunov scheme converges to an incompressible colocated scheme under the consistency con-
dition Dx ¼ OðMÞ. At the opposite, estimates (49) and (50) show that the 1D Roe scheme should not create any spurious
waves as soon as the initial conditions are well-prepared in the sense of (5): as a consequence, the 1D Roe scheme should
not suffer of any particular inaccuracy when the Mach number goes to zero.

Finally, let us note that estimates (49) and (50) mean that
kq� PqkðsacÞ ¼ OðMÞ ð56Þ
at the discrete level where q :¼ ðr;uÞT with r defined by (18). In the same way, estimates (54) and (55) mean that
kq� PqkðsacÞ  OðMÞ ð57Þ
at the discrete level when Dx OðMÞ. In Section 4, we will clearly justify in the linear case from a theoretical point of view
estimates (56) and (57): see estimates (65) and (66) in Proposition 4.1.
4. Analysis with the linear wave equation

We now analyse the inaccuracy of Godunov type schemes at low Mach number with the approach proposed in Section 2.4
by studying the linear wave equation
@tqþ
L
M

q ¼ 0;

qðt ¼ 0; xÞ ¼ q0ðxÞ

8<: ð58Þ
solved on X ¼ Td2f1;2;3g with the Godunov scheme (in the linear case, all Godunov type schemes are identical). We recall that
(58) satisfies the estimate
kq� Pqkðt ¼ 0Þ ¼ OðMÞ ) kq� Pqkðt P 0Þ ¼ OðMÞ ð59Þ
(see point 2 of Theorem 2.2). This linear approach will justify the formal approach proposed in Section 3.2.

4.1. The Godunov scheme and its first-order modified equation

The Godunov scheme applied to linear wave equation (58) on a 2D Cartesian mesh is given by
d
dt ri;j þ

a�
M
� u1;iþ1;j � u1;i�1;j

2Dx1
þ u2;i;jþ1 � u2;i;j�1

2Dx2

� �
¼ a�

2M
� riþ1;j � 2ri;j þ ri�1;j

Dx1
þ ri;jþ1 � 2ri;j þ ri;j�1

Dx2

� �
;

d
dt u1;i;j þ

a�
M
� riþ1;j � ri�1;j

2Dx1
¼ a�

2M
� u1;iþ1;j � 2u1;i;j þ u1;i�1;j

Dx1
;

d
dt u2;i;j þ

a�
M
� ri;jþ1 � ri;j�1

2Dx2
¼ a�

2M
� u2;i;jþ1 � 2u2;i;j þ u2;i;j�1

Dx2
:

8>>>>>>><>>>>>>>:
ð60Þ
We recall that q :¼ r
u

� �
where r is the pressure perturbation defined with (18). For the sake of simplicity, we suppose in the

sequel that 8k : Dxk ¼ Dx. Thus, the first-order modified equation associated to (60) is given by
@tqþ
L
M

q ¼ Bjq;

qðt ¼ 0; xÞ ¼ q0ðxÞ

8<: ð61Þ
with
Bjq ¼ K

Dr
@2u1
@x2

1

@2u2
@x2

2

0BBB@
1CCCA and K ¼

mr 0 0
0 mu1 0
0 0 mu2

0B@
1CA ð62Þ
where mr ¼ muk
¼ mnum :¼ a� Dx

2M (mnum is the numerical viscosity). Let us note that in 3D, the diffusive term (62) is defined with
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Bjq ¼ K

Dr
@2u1
@x2

1

@2u2
@x2

2

@2u3
@x2

3

0BBBBBB@

1CCCCCCA and K ¼

mr 0 0 0
0 mu1 0 0
0 0 mu2 0
0 0 0 mu3

0BBB@
1CCCA ð63Þ
(Dr in (62) and (63) is the Laplacian operator applied to r, and Dx in mnum is a strictly positive constant). In the sequel, we
define the velocity viscosity mu :¼ ðmu1 ; . . . ; mud

Þ 2 Rd (d 2 f1;2;3g). An interesting question is to verify if estimate (59) is still
valid when linear wave equation (58) is replaced by first-order modified Eq. (61) whose diffusive term (62) or (63) is non-
isotropic a priori.

4.2. Influence of the non-isotropic diffusive term

We have the following result:

Proposition 4.1. Let qðt; xÞ be solution of
@tqþ
L
M

q ¼ Bjq;

qðt ¼ 0; xÞ ¼ q0ðxÞ

8<: ð64Þ
on X ¼ Td2f1;2;3g. Then:

(1) when X ¼ Td¼1 : 8KP 0, we have
kq� Pqkðt ¼ 0Þ ¼ OðMÞ ) kq� Pqkðt P 0Þ ¼ OðMÞ; ð65Þ
(2) when X ¼ Td2f2;3g and Dx OðMÞ : 8KP 0 such that jmuj ¼ O a�Dx
M

� �
, we have
9q0 2 ðL2ðTdÞÞ1þd such that kq� Pqkðt ¼ 0Þ ¼ OðMÞ and kq� PqkðsacÞ  OðMÞ ð66Þ
where sac ¼ O
ML

Td

a�

� �
(LTd is a characteristic length of Td of order one and sac is an acoustic time scale). Nevertheless, when

Dx ¼ OðMÞ, jjq� PqjjðsacÞ ¼ OðMÞ.

To summarize, estimate (65) is satisfied in 1D, and is not satisfied in 2D and in 3D when Dx OðMÞ and when
jmuj ¼ Oða�Dx

M Þ because of the loss of invariance of the well-prepared subspace E (see point 2 of Lemma 4.2). This loss of invari-
ance is due to the fact that Bj is a non-isotropic operator in 2D (and 3D). This result explains clearly (at least when the mesh
is Cartesian) why 2D (and 3D) Godunov type schemes are not accurate at low Mach number in the non-linear case and why it
is the numerical viscosity on momentum equation (1)(b) that is responsible for this inaccuracy, and not the numerical viscosity on
mass and energy equations (1)(a,c). Let us note that relation (68) shows that the acoustic energy EacðtÞ in the acoustic subspace
E? goes to zero when t ¼ Oð1Þ; mu1 ¼ mu2 ¼ a�Dx

2M and M � 1. Nevertheless, when the domain X is not periodic, boundary con-
ditions can continuously inject energy in E. In that case, the energy transfer from E to E? may not converge to zero and EacðtÞ
may be of order 1 when t ¼ Oð1Þ. These statements underline that the inaccuracy of non-linear Godunov type schemes at low
Mach number can be explained at least partly with linear arguments and without the convection operator H in (11) i.e. without
the convection operator u � r in (1), and, thus, without the notion of shear waves. Nevertheless, non-linearities can amplify this
inaccuracy (see also the discussion about non-linear system (84) that follows Conjecture 5.1). Moreover, the boundary con-
ditions can also contribute to the loss of invariance of the well-prepared subspace E and, thus, to the inaccuracy at low Mach
number (see Section 7.2.2).

The proof of Proposition 4.1 uses two lemmas that correspond respectively to Lemmas 2.2 and 2.3 adapted to the case of
linear equation (64). The first one is given by:

Lemma 4.1. Let qðt; xÞ be solution of (64) on X ¼ Td2f1;2;3g. Then:
8KP 0 : Eðt P 0Þ 6 Eðt ¼ 0Þ:
The second one is given by:

Lemma 4.2. For any K, we have:
(1) when X ¼ Td¼1: the subspaces E and E? are invariant for Eq. (64);
(2) when X ¼ Td2f2;3g: the subspace E is invariant for Eq. (64) if and only if mu ¼ 0;
(3) when X ¼ Td2f2;3g: the subspace E? is invariant for Eq. (64) if and only if mu ¼ 0.
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Let us underline that the important point of Lemma 4.2 concerns the loss of invariance of E in 2D or 3D when mu – 0. The
fact that E? is not invariant when mu – 0 is not an important point (see Section 2.4). Lemma 4.2 shows also that the 1D-case
and the 2D(or 3D)-case are very different: this difference is due to the fact that, when mu – 0, the velocity diffusive term in
(62) (or (63)) is isotropic if and only if the space dimension is equal to one. Let us also note that in 1D, E is a trivial subspace
and E? is almost equal to ðL2ðTÞÞ2. Indeed, we have in 1D
E ¼ q :¼
r

u

� �
2 ðL2ðTÞÞ2 such that rðxÞ ¼ Cst and uðxÞ ¼ Cst

	 

:

Of course, this is not at all the case in 2D or 3D. This difference between the 1D-case and the 2D(or 3D)-case is also under-
lined by the structure of the kernel Ker L

M � Bj
� �

with respect to mu:

Lemma 4.3. For any KP 0, we have:

(1) when X ¼ Td¼1:
Ker
L
M
� Bj

� �
¼ E;
(2) when X ¼ Td2f2;3g and mu ¼ 0:
Ker
L
M
� Bj

� �
¼ E;
(3) when X ¼ Td2f2;3g and muk
> 0ðk 2 f1; . . . ; dgÞ:
Ker
L
M
� Bj

� �
¼ q :¼

r

u

� �
2 ðL2ðTÞÞ1þd such that rr ¼ 0 and @xk

uk ¼ 0
	 


ˆ E:
Proof of Proposition 4.1:

� When X ¼ Td¼1: Using Lemmas 4.1 and 4.2, point 1 is a direct consequence of point 2 of Theorem 2.2.
� When X ¼ Td2f2;3g and mu; – 0: The subspace E is not invariant (see point 2 of Lemma 4.2). Thus, we cannot apply point 2

of Theorem 2.2. Let us choose q0 2 E such that the kth Fourier component �q0
k of q0 is given by
�q0
k ¼

Akffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 þ k2
2

q 0
�k2

k1

0B@
1CA 2 �Ek–0 ð67Þ
(see proof of Lemma 4.2 for the definition of �Ek–0) with Ak 2 C, k :¼ ðk1; k2Þ, k1 :¼ l1=LTd 2 R and k2 :¼ l2=LTd 2 R knowing
that OðjAkjÞ ¼ Oðjl1jÞ ¼ Oðjl2jÞ ¼ OðLTd Þ ¼ 1ðLTd is a characteristic length of Td). By using (73), we obtain that
�qkðtÞ ¼ Akffiffiffiffiffiffiffiffiffiffi

k2
1þk2

2

p 0;�k2 exp �mu1 k2
1t

� �
; k1 exp �mu2 k2

2t
� �� �T

. Thus, we have0 1

�q?k ðtÞ ¼

Akffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 þ k2
2

q � k1k2

k2
1 þ k2

2

exp �mu2 k2
2t

� �
� exp �mu1 k2

1t
� �h i 0

k1

k2

B@ CA:

This implies that
Eac;kðtÞ ¼ jAkj2
k2

1k2
2

k2
1 þ k2

2

� �2 exp �mu1 k2
1t

� �
� exp �mu2 k2

2t
� �h i2

ð68Þ
where Eac;kðtÞ is the kth Fourier component of the energy in the acoustic space E?. Let us choose t ¼ sac :¼ ML
Td

a�
ðsac is an

acoustic time scale) and let us suppose that jmuj ¼ Oða�Dx
M Þ which is equivalent to write that mu1 ¼ k1

a�Dx
M and mu2 ¼ k2

a�Dx
M with

Oðk1Þ þ Oðk2Þ ¼ 1ðk1 P 0 and k2 P 0). We have mu1 k2
1sac ¼ k1l2

1
Dx
L
Td

and mu2 k2
2sac ¼ k2l2

2
Dx
L
Td

. This implies that
Eac;kðsacÞ ¼ jAkj2
l2

1l2
2

ðl2
1 þ l2

2Þ
2 exp �k1l2

1
Dx
LTd

� �
� exp �k2l2

2
Dx
LTd

� �� �2

: ð69Þ
Equality (69) shows that it is possible to choose ðl1;l2Þ of order one such that Eac;kðsacÞ ¼ OðDx2Þ. By using the Parseval’s
theorem, we obtain the estimate EacðsacÞ ¼ OðDx2Þ that is to say kq� PqkðsacÞ ¼ OðDxÞ although kq� Pqkðt ¼ 0Þ ¼ 0. Let
us now define eq0 2 E such that �~q0

k is given by (67) with jeAkj ¼ Oð1Þ: thus, by construction, we have k~q� P~qkðsacÞ ¼ OðDxÞ
where ~q is solution of (64) with the initial condition ~q0. Let us also define �q0 2 E? such that k�q0k ¼ OðMÞ and let us define
q0 ¼ ~q0 þ �q0. Then, we have kq0 � Pq0k ¼ k�q0k ¼ OðMÞ. Moreover, by linearity, we have q ¼ ~qþ �q where �q is solution of
(64) with the initial condition �q0. Since k�q0k ¼ OðMÞ, we have also k�q� P�qkðsacÞ ¼ OðMÞ. Thus, we obtain
jjq� PqkðsacÞ ¼ OðDxÞ since k~q� P~qkðsacÞ ¼ OðDxÞ. h

It remains to prove Lemmas 4.1 and 4.2:
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Proof of Lemma 4.1: We have d
dt kqk

2ðtÞ ¼ 2hq;Bjqi since q; L
M q

 �
¼ a�

M ðhr;r � ui þ hrr;uiÞ ¼ 0. Thus, we obtain the result by
noting that
hq;Bjqi ¼ � mrkrrjj2 þ
Xd

k¼1

muk
k@xk

ukk2

 !
: � ð70Þ
Proof of Lemma 4.2: We study the 2D-case (the 3D-case is similar). As E is invariant for the linear equation @tqþ L
M q ¼ 0 (see

Lemma 2.3 with H ¼ 0), we just study the invariance of E for the equation
@tq ¼ Bjq;

qðt ¼ 0; xÞ ¼ q0ðxÞ:

	
ð71Þ
In the Fourier space, PDE (71) is given by the ODE
d
dt

�qk ¼ �Bj;k�qk;

�qkðt ¼ 0Þ ¼ �q0
k

8<: ð72Þ
where �qkðtÞ is the kth Fourier component of qðt; xÞ and where
�Bj;k ¼ �
mrkkk2 0 0

0 mu1 k2
1 0

0 0 mu2 k2
2

0BB@
1CCA:
In (72), k :¼ ðk1; k2Þ is the wave number that belongs to an infinite discrete set K. The solution of (72) is given by
�qkðtÞ ¼

�r0
k expð�mrkkk2tÞ

�u0
1;k expð�mu1 k2

1tÞ
�u0

2;k expð�mu2 k2
2tÞ

0BB@
1CCA ð73Þ
knowing that �q0
k ¼

�r0
k

�u0
1;k

�u0
2;k

0@ 1A. Moreover, q 2 E if and only if 8k 2 K : �qk 2 �Ek where �Ek¼0 :¼ Vect
1
0
0

0@ 1A; 0
1
0

0@ 1A; 0
0
1

0@ 1A8<:
9=; and

�Ek–0 :¼ Vect
0
�k2

k1

0@ 1A8<:
9=;. Formula (73) shows that it is possible to find k 2 K and �q0

k 2 �Ek such that �qkðt > 0Þ R �Ek when

mu – 0. This proves that E is not invariant in 2D when mu – 0. Of course, when mu ¼ 0, formula (73) shows that E is invariant

in 2D. By noting that q 2 E? if and only if 8k 2 K : �qk 2 �E?k where �E?k¼0 :¼ Vectf0g and �E?k–0 :¼ Vect
1
0
0

0@ 1A; 0
k1

k2

0@ 1A8<:
9=;, we show

in the same way that E? is invariant in 2D if and only if mu ¼ 0. Let us now study the 1D-case. In that case, formula (73) is
replaced by
�qkðtÞ ¼
�r0

k expð�mrkkk2tÞ
�u0

1;k expð�mu1 k2
1tÞ

 !
: ð74Þ
Moreover, we have �Ek¼0 ¼ �E?k–0 ¼ Vect 1
0

� �
;

0
1

� �	 

and �Ek–0 ¼ �E?k¼0 ¼ f0g. These relations allow to obtain that E and E? are

invariant in 1D for any ðmr; muÞ 2 R2. h

Proof of Lemma 4.3: When K ¼ 0, we have Bj ¼ 0. Then, we have Ker L
M � Bj
� �

¼ E in any spatial dimension since KerL ¼ E.
We now suppose that K > 0. � �

� When X ¼ Td¼1: In 1D, we have q 2 E ) r ¼ Cst and u ¼ Cst . Thus Lq ¼ Bjq ¼ 0 that is to say E 
 Ker L

M � Bj . Let us choose
q 2 Ker L

M � Bj
� �

. When mr > 0 and mu > 0, by using the fact that q; L
M � Bj
� �

q
 �

¼ �hq;Bjqi and relation (70), we obtain that
r ¼ Cst and u ¼ Cst that is to say q 2 E. When mr > 0 and mu ¼ 0, we just obtain with (70) that r ¼ Cst . Nevertheless, r ¼ Cst

and q 2 Ker L
M � Bj
� �

imply that u ¼ Cst . Thus, we have also q 2 E. The case mr ¼ 0 and mu > 0 is identical in 1D to the case
mr > 0 and mu ¼ 0.

� When X ¼ Td2f2;3g and mu ¼ 0: The proof is identical to the proof of the 1D-case by replacing u ¼ Cst with r � u ¼ 0.
� When X ¼ Td2f2;3g and muk

> 0 ðk 2 f1; . . . ; dgÞ: Let us choose q 2 Kerð L
M � BjÞ. We deduce from (70) that rr ¼ 0 and

@xk
uk ¼ 0. Let us now suppose that q is such that rr ¼ 0 and @xk

uk ¼ 0. In that case, we have q 2 E (i.e. q 2 KerL) and
q 2 KerBj that is to say q 2 Ker L

M � Bj
� �

. h
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5. Construction of a class of colocated compressible schemes accurate at low Mach number

By using the results obtained in the linear case in Section 4, we now propose a large class of colocated schemes that may
be accurate at low Mach number on any mesh. This class is named low Mach X schemes and consists in a simple modification
of any X scheme of Godunov type ðX 2 fRoe;VFRoe; . . .gÞ or not (X = kinetic scheme [20] for example). We also show that
other colocated schemes accurate at low Mach number as, for example, the Roe–Turkel type schemes [7–9] or the
AUSM+-up scheme [12] are similar to a low Mach X scheme. We also underline that there exists a link between the proposed
low Mach Godunov scheme and a colocated incompressible scheme stabilized with a Brezzi–Pitkäranta type stabilization [21].

5.1. Construction of a linear low Mach Godunov scheme

It is the loss of invariance in 2D and 3D of the well-prepared subspace E that is responsible for inaccuracy (66) of Godunov
scheme (60) applied to linear wave equation (58). This loss of invariance is induced by the fact that the velocity diffusive
term in (62) and (63) is non-isotropic when mu – 0. Thus, following point 2 of Lemma 4.2, it is natural to choose mu ¼ 0 in
(62) and (63) to recover the invariance of E in 2D and 3D, and, finally, to recover estimate (59) in 2D and 3D by using point
2 of Theorem 2.2. More precisely, we have:

Theorem 5.1. Let qðt; xÞ be solution of
@tqþ
L
M

q ¼ mr
Dr

0

� �
;

qðt ¼ 0; xÞ ¼ q0ðxÞ

8><>: ð75Þ
on X ¼ Td2f1;2;3g. Then, Pqðt P 0Þ ¼ Pq0 and
8q0 2 ðL2ðTdÞÞ1þd
; 8mr P 0 :

Eincðt P 0Þ ¼ Eincðt ¼ 0Þ;
Eacðt P 0Þ 6 Eacðt ¼ 0Þ:

	

This implies that:
8mr P 0 : kq� Pqkðt ¼ 0Þ ¼ OðMÞ ) kq� Pqkðt P 0Þ ¼ OðMÞ: ð76Þ
Let us note that, because of the pressure diffusive term in (75), we have kq� Pqkðt P 0Þ 6 kq� Pqkðt ¼ 0Þ. Thus,
kq� Pqkðt P 0Þ ¼ OðMÞ could be replaced by maxtP0kq� PqkðtÞ ¼ OðMÞ in (76). Of course, the numerical scheme, whose
first-order modified equation is given by (75) (when 8k : Dxk ¼ Dx), is the following:
d
dt ri;j þ

a�
M
� u1;iþ1;j � u1;i�1;j

2Dx1
þ u2;i;jþ1 � u2;i;j�1

2Dx2

� �
¼ a�

2M
� riþ1;j � 2ri;j þ ri�1;j

Dx1
þ ri;jþ1 � 2ri;j þ ri;j�1

Dx2

� �
;

d
dt u1;i;j þ

a�
M
� riþ1;j � ri�1;j

2Dx1
¼ 0;

d
dt u2;i;j þ

a�
M
� ri;jþ1 � ri;j�1

2Dx2
¼ 0:

8>>>>>><>>>>>>:
ð77Þ
For the sake of simplicity, linear scheme (77) is named low Mach Godunov scheme. In Section 5.2, we prove in the 1D-case
that the explicit scheme deduced from the explicit discretization of (77) satisfies the von Neumann stability condition under
a classical CFL criteria although there is numerical viscosity only on the pressure equation. We also prove in Section 5.2 that
the 1D implicit scheme satisfies the von Neumann stability condition without any CFL criteria. At last, we emphasize that
scheme (77) satisfies the two additional conditions introduced in Section 2.5.

5.2. Stability analysis of the 1D linear low Mach Godunov scheme

We now prove that scheme (77) written in 1D satisfies the von Neumann necessary condition for L2 stability [27] when
we discretize the time derivatives with an explicit or implicit first-order time scheme. For the explicit scheme, we have the
following result:

Lemma 5.1. Let us define the explicit scheme
rnþ1
i � rn

i

Dt
þ a�

M
�
un

iþ1 � un
i�1

2Dx
¼ jr

a�
2M
�
rn

iþ1 � 2rn
i þ rn

i�1

Dx
;

unþ1
i � un

i

Dt
þ a�

M
�
rn

iþ1 � rn
i�1

2Dx
¼ ju

a�
2M
�
un

iþ1 � 2un
i þ un

i�1

Dx

8>><>>: ð78Þ
with periodic boundary conditions. Then:

(1) when jr 2 Rþ� and ju ¼ jr: the von Neumann condition is satisfied under the CFL condition
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Dt 6 M minðjr ;j�1
r Þ

Dx
a�

; ð79Þ
(2) when jr 2 Rþ� and ju ¼ 0: the von Neumann condition is satisfied under the CFL condition
Dt 6 M min
jr

2
;j�1

r

� �Dx
a�
: ð80Þ
Let us note that CFL condition (79) is optimal when jr ¼ 1: this corresponds to the linear Godunov scheme. For the implicit
scheme, we obtain the following result:

Lemma 5.2. Let us define the implicit scheme
rnþ1
i � rn

i

Dt
þ a�

M
�
unþ1

iþ1 � unþ1
i�1

2Dx
¼ jr

a�
2M
�
rnþ1

iþ1 � 2rnþ1
i þ rnþ1

i�1

Dx
;

unþ1
i � un

i

Dt
þ a�

M
�
rnþ1

iþ1 � rnþ1
i�1

2Dx
¼ ju

a�
2M
�
unþ1

iþ1 � 2unþ1
i þ unþ1

i�1

Dx

8>><>>: ð81Þ
with periodic boundary conditions. Then, for any Dt > 0, when jr 2 Rþ� and ju ¼ jr or ju ¼ 0, the von Neumann condition is
satisfied.

The proof of Lemmas 5.1 and 5.2 are given in Appendix B. These lemmas show that the numerical viscosity on the velocity
equation should not be essential to preserve the L2 stability as soon as the numerical viscosity on the pressure equation is
strictly positive: the numerical results proposed in Section 7 justify this assertion. We emphasize that the von Neumann con-
dition is not sufficient a priori to obtain the L2 stability (see the Kreiss matrix theorem in [27], p. 74). Nevertheless, it is pos-
sible to prove that the von Neumann condition is in fact necessary and sufficient for the explicit and implicit schemes when
jr 2 Rþ� and ju ¼ jr and, thus, for the Godunov scheme (see the remark at the end of Appendix B). But, when jr 2 Rþ� and
ju ¼ 0 and, thus, for the low Mach Godunov scheme, it seems to be more difficult to obtain a similar result. Nevertheless, in
the 1D semi-discrete case, it is possible to obtain the L2 stability when jr 2 Rþ� and ju ¼ 0 with an energy method [28].
5.3. Construction of non-linear colocated low Mach schemes on any mesh

The arguments used to build linear scheme (77) on a Cartesian mesh incite us to write that a good colocated non-linear X
scheme of Godunov type (X = Roe [1] for example) or not (X = kinetic scheme [20] for example) is one for which the first-or-
der modified equation associated to the linearized X scheme without convection preserves the well-prepared subspace E. We
see in Theorem 5.1 that a simple way to obtain such a property on a Cartesian mesh is to center the discretization of the
pressure gradient. Moreover, the stability results of Lemmas 5.1 and 5.2 do not prohibit to apply this idea. Thus, we propose
the following Conjecture for the non-linear case on any mesh:

Conjecture 5.1. Let X be a colocated scheme of Godunov type or not applied to compressible Euler system (1) or to barotropic
Euler system (6) on any 2D (or 3D) mesh. We suppose that the X scheme is stable at low Mach number. Let us modify the X scheme
in using the central difference:

(1) to discretize the momentum flux;
(2) or to discretize only the pressure gradient in the momentum flux when it is possible (X = VFRoe [2,3,8,9] or X = FDS [29,30]

for example).

Then, at low Mach number:

(i) the modified X scheme remains stable;
(ii) the modified X scheme does not create any spurious wave and is accurate at low Mach number.

This modified X scheme is named ‘‘low Mach X scheme”.

Let us underline that the modification applied to a X scheme to obtain a low Mach X scheme is simple and may be applied on
any mesh (i.e. not only on a Cartesian mesh: see the discussion in Section 5.8, and the numerical results in Sections 7.1.2 and
7.2.2). Moreover, the incompressible energy is constant when qðt; xÞ is solution of (75). This means that a low Mach Godunov
scheme should diffuse the incompressible energy at a time scale of order 1 (here, X is a Godunov type scheme). Finally, we can
say that low Mach Godunov schemes proposed in Conjecture 5.1 satisfy the two additional conditions introduced in Sec-
tion 2.5. Let us also underline that Conjecture 5.1 is also written for colocated X schemes that are not of Godunov type.

It is important to note that Conjecture 5.1 should also be valid by adding a pressure term of orderOðM2DxÞ (see the case of
the linear Roe–Turkel scheme in Section 5.5.1 and the case of the AUSM+-up scheme in Section 5.5.2). Indeed, on a Cartesian
mesh, the 2D scheme
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ðrpÞdiscrete
i;j :¼

piþ1;j � pi�1;j

2Dx1
pi;jþ1 � pi;j�1

2Dx2

0BB@
1CCAþOðM2DxÞ ð82Þ
is equivalent to the 2D scheme
ðrrÞdiscrete
i;j :¼

riþ1;j � ri�1;j

2Dx1
ri;jþ1 � ri;j�1

2Dx2

0B@
1CAþOðMDxÞ ð83Þ
because of (18) (with OðDx1Þ ¼ OðDx2Þ :¼ Dx). And, if the central difference used to discretizerr in linear low Mach Godunov
scheme (77) is replaced by scheme (83), we may think that estimate (29) remains valid for first-order modified Eq. (26) asso-
ciated to (83) (at least when t 2 ½0; sac� where sac ¼ OðMÞ). In Section 6, we try to give a possible theoretical framework to
justify schemes of type (83) (and, thus, of type (82)). In the sequel, we will say that a scheme verifying (83) (and, thus,
(82)) is similar to a low Mach X scheme. At last, to justify Conjecture 5.1 with theoretical arguments in the non-linear case
and when the mesh is Cartesian, we should prove that when we replace non-linear system (11) with the non-linear system
@tqþHðqÞ þ
L
M
ðqÞ ¼ Bjq;

qðt ¼ 0; xÞ ¼ q0ðxÞ

8<: ð84Þ
withHðqÞ :¼ 0 orHðqÞ given by (9)(b), with L
M ðqÞ given by (9)(c) and with Bjq given by (62) or (63), Theorem 2.1 remains true

in 1D but remains true in 2D or 3D if and only if the velocity numerical viscosity mu is equal to zero in (62) or (63). This result
would be the non-linear version of Proposition 4.1 and of Theorem 5.1. We do not study this difficult non-linear problem in
this paper.

5.4. Application to the non-linear Roe and VFRoe schemes

To simplify the notations, we suppose that the geometry is 2D. The low Mach Roe scheme on a 2D Cartesian mesh is de-
fined with (34) and (35) by replacing in (35) the matrix
jAkðUÞj :¼

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

0BBB@
1CCCA ð85Þ
with
jeAkðUÞj :¼

a11 a12 a13 a14

0 0 0 0
0 0 0 0

a41 a42 a43 a44

0BBB@
1CCCA: ð86Þ
In the case of the VFRoe scheme [2,3] on a 2D Cartesian mesh, the fluxes are defined with
F1;iþ1=2;j ¼ F 1ðU�iþ1=2;jÞ;
F2;i;jþ1=2 ¼ F 2ðU�i;jþ1=2Þ

(
ð87Þ
where F kðUÞ (k 2 f1;2g) are the fluxes of compressible Euler system (1), and where U�iþ1=2;j and U�i;jþ1=2 are solutions of a lin-
earized Riemann problem. Thus, the low Mach VFRoe scheme is defined by replacing (87) with
F1;iþ1=2;j ¼

q�u�1
q�u�21 þ p��

q�u�1u�2
ðq�E� þ p�Þu�1

0BBB@
1CCCA

iþ1=2;j

and F2;i;jþ1=2 ¼

q�u�2
q�u�1u�2

q�u�22 þ p��

ðq�E� þ p�Þu�2

0BBB@
1CCCA

i;jþ1=2

ð88Þ
where
p��iþ1=2;j ¼
pi;j þ piþ1;j

2
;

p��i;jþ1=2 ¼
pi;j þ pi;jþ1

2
;

8><>:

the quantities ðq�;u�1;u�2; E

�; p�Þiþ1=2;j and ðq�;u�1;u�2; E
�; p�Þi;jþ1=2 being deduced from U�iþ1=2;j and U�i;jþ1=2.



996 S. Dellacherie / Journal of Computational Physics 229 (2010) 978–1016
The low Mach VFRoe scheme should be more robust than the low Mach Roe scheme. Indeed, the low Mach VFRoe scheme
keeps the upwinding of the discretization of r � ðqu� uÞ (see point 2 of Conjecture 5.1); at the opposite,
the low Mach Roe scheme removes any upwinding on the discrete velocity equation (see point 1 of Conjecture 5.1).

5.5. Links between low Mach X schemes and other colocated schemes accurate at low Mach number

We now prove that colocated low Mach schemes previously proposed in the literature are similar or identical to the low
Mach X scheme proposed in Conjecture 5.1.

5.5.1. Links with the Roe–Turkel scheme and with the Roe scheme with pressure correction in the linear case
We have the following result whose proof is in Appendix C:

Proposition 5.1. When wave equation (58) is solved on a 2D Cartesian mesh with 8k : Dxk ¼ Dx:

(1) the first-order modified equation associated to the Roe–Turkel scheme is given by (61) with
Bjq ¼ BRoe�Turkel
j q :¼ a�

Dx
2

Dr=M2

@2u1

@x2
1

@2u2

@x2
2

0BBBBB@

1CCCCCA ¼ a�
Dx
2M

Dr=M
0
0

0B@
1CAþOðMÞ

8><>:
9>=>;; ð89Þ
(2) the first-order modified equation associated to the Roe scheme with pressure correction is given by (61) with
Bjq ¼ Bpressure corr:
j q :¼ a�

Dx
2M

Dr

0
0

0B@
1CA: ð90Þ
Proposition 5.1 – that may be written in 3D – justifies the Roe–Turkel scheme and the Roe scheme with pressure correc-
tion. Indeed, this proposition shows that the linear Roe scheme with pressure correction is identical to the linear low Mach
Godunov scheme; it also shows that the linear Roe–Turkel scheme is similar to the linear low Mach Godunov scheme since (89)
implies that the pressure gradient rr is discretized with (83). Moreover, the pressure numerical viscosity in (89) is of order
M�2: this explains why the Roe–Turkel scheme has to be implicited even when the time step is of order MDx

a�
(acoustic time

scale). More precisely, (89) shows that an explicit Roe–Turkel scheme should have a time step of order M2Dx
a�

: this point is jus-
tified by point 2 of Lemma 5.1 by choosing jr ¼ M�1 and M � 1 in CFL condition (80). At the opposite, Lemma 5.2 shows that
the implicit Roe–Turkel scheme should be stable without any CFL condition. These stability results are compatible with the
stability analysis of Roe–Turkel scheme applied to system (1) proposed in [31]. At last, let us underline that point 2 of Prop-
osition 5.1 coupled to point 2 of Lemma 5.1 underlines that, contrary to what it is written in [5] (see Section 4.2 in [5]), it is a
priori possible to propose an explicit Godunov type scheme accurate at low Mach number that is stable with a time step of
order MDx

a�
.

5.5.2. Formal links with other non-linear colocated schemes
The non-linear AUSM+-up scheme [12] is a flux splitting type scheme whose 2D numerical flux written in physical dimen-

sion is given by (in the x1 direction)
F1;iþ1=2;j ¼ Fconvection
1;iþ1=2;j þ

0
piþ1=2;j

0
0

0BBB@
1CCCA
where Fconvection
1;iþ1=2;j is an upwind discretization of the convective flux ðqu1;qu2

1;qu1u2;qu1HÞT (H :¼ Eþ p=q is the total enthalpy)
and where piþ1=2;j is an estimation of the pressure at the interface ðiþ 1=2; jÞ of the 2D Cartesian mesh. For a subsonic flow,
the AUSM+-up scheme is defined with
piþ1=2;j ¼ PþðMi;jÞpi;j þ P�ðMiþ1;jÞpiþ1;j þ pu ð91Þ
(see formula (75) in [12]) knowing that
PðmÞ� ¼ 1
4 ðm� 1Þ2ð2�mÞ � amðm2 � 1Þ2; ðaÞ

pu ¼ �KuPþðMi;jÞP�ðMiþ1;jÞðqi;j þ qiþ1;jÞfaaiþ1=2;jðuiþ1;j � ui;jÞ; ðbÞ

a ¼ 3
16 ð�4þ 5f 2

a Þ; ðcÞ
fa ¼ Mð2�MÞ ðdÞ

8>>>>><>>>>>:
ð92Þ
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where Ku 2 ½0;1�;Mi;j ¼
ui;j

aiþ1=2;j
;Miþ1;j ¼

uiþ1;j

aiþ1=2;j
; aiþ1=2;j ¼ O

ai;j þ aiþ1;j

2

� �
and M2 ¼ O

M2
i;j þM2

iþ1;j

2

 !
. When pu :¼ 0 in (91) and

a :¼ 3=16 in (92)(a), the AUSM+-up scheme is the AUSM+ scheme tested in [12,32]; when pu :¼ 0 in (91) and a :¼ 0 in
(92)(a), the AUSM+-up scheme is the AUSM scheme proposed in [33]. By using (92)(a), it is easy to obtain that
PðmÞ� ¼ 1
2
� 3

4
þ a

� �
mþOðm3Þ: ð93Þ
Thus, when a is defined with (92)(c), we obtain PðmÞ� ¼ 1
2þOðmM2Þ þ Oðm3Þ (we use f 2

a ¼ OðM
2Þ). Since pu defined with

(92)(b) is of the order of O M
uiþ1;j � ui;j

aiþ1=2;j

� �
�Oðqa2Þ (we use fa ¼ OðMÞ and Ku ¼ Oð1Þ), we obtain� �
piþ1=2;j ¼
pi;j þ piþ1;j

2
þO M

uiþ1;j � ui;j

aiþ1=2;j
� Oðqa2Þ þ OðM3Þ ðaÞ

¼
pi;j þ piþ1;j

2
þOðM2DxÞ � Oðqa2Þ þ OðM3Þ ðbÞ

¼
pi;j þ piþ1;j

2
þOðM2DxÞ þ OðM3Þ ðcÞ

ð94Þ
by using (91) (we recall that p ¼ Oðqa2Þ). We finally obtain
piþ1=2;j ¼ p� þ OðM
2DxÞ þ OðM2Þ ð95Þ
when the initial conditions are well-prepared in the sense of (5). Estimate (95) is identical to estimate (47) obtained for the
1D Roe scheme. Estimate (94)(a) shows that the AUSM+-up scheme is similar to a low Mach X scheme since (94)(a) gives an
approximation of type (82) for the pressure gradient rp. Nevertheless, when a ¼ 3=16 (AUSM+ scheme) or a ¼ 0 (AUSM
scheme) for example, formula (93) shows that PðmÞ� ¼ 1

2� CmþOðm3Þ where C ¼ Oð1Þ. This implies that
piþ1=2;j ¼
pi;j þ piþ1;j

2
þOðMi;j �Miþ1;jÞ þ OðM2DxÞ þ OðM3Þ
instead of (94)(c) (with pu given by (92)(b) or equal to zero). Thus, since OðMi;j �Miþ1;jÞ ¼ OðMDxÞ in 2D (or 3D), we obtain
for the 2D (or 3D) AUSM+ and AUSM schemes
piþ1=2;j ¼ p� þ OðMDxÞ þ OðM2Þ ð96Þ
when the initial conditions are well-prepared in the sense of (5). Estimate (96) is exactly estimate (53)(a) obtained for the 2D
Roe scheme. Estimates (95) and (96) explain respectively why at low Mach number, the AUSM+-up scheme should be accu-
rate and why the AUSM+ scheme (tested in [12,32]) and the AUSM scheme should not be accurate in 2D (or 3D) (when
Dx OðMÞ): see Fig. 20 in [12]. Nevertheless, the previous estimates show also that the AUSM+ scheme should be accurate
at low Mach number when a ¼ �3=4þOðMÞ in (92)(a): this condition is identical to condition (54) in [12]. Of course, (92)(c)
satisfies this condition.

Moreover, when the flow is subsonic and when the fluid is a perfect gas, the colocated scheme proposed in [18] is
given by
F1;iþ1=2;j ¼
F1;i;j þ F1;iþ1;j

2
þ Fnum: diffusion

1;iþ1=2;j ð97Þ
with 0 1

Fnum: diffusion

1;iþ1=2;j ¼ �1
2
juiþ1=2;jj

qiþ1;j � qi;j

qiþ1;ju1;iþ1;j � qi;ju1;i;j

qiþ1;ju2;iþ1;j � qi;ju2;i;j

cðqiþ1;jEiþ1;j � qi;jEi;jÞ

BBB@ CCCA ð98Þ
where c ¼ Oð1Þ is the adiabatic constant of perfect gases (see formulae (2), (3), (10) in [18]). This scheme is accurate at low
Mach number. By noting that cE ¼ HþOðM2Þ for a perfect gas at low Mach number, we see that (97) and (98) is exactly a low
Mach X scheme where the convective flux ðqu1;qu2

1;qu1u2;qu1HÞT is discretized with an upwind fashion. In [16,17],
Fnum:diffusion

1;iþ1=2;j is not exactly (98) but the pressure gradient is also discretized with a central difference.
To summarize, we can say that the AUSM+-up scheme [12] and the colocated schemes proposed in [16–18] are respec-

tively similar and identical to a low Mach X scheme.

5.6. Two other colocated schemes that do not create any spurious wave

Let us define the 2D system (the 3D-case is similar)
@tqþ
L
M

q ¼ Bl1 ;l2
q;

qðt ¼ 0; xÞ ¼ q0ðxÞ

8<: ð99Þ
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where
Bl1 ;l2
q ¼ l1

2M

Dr
@2u1

@x2
1

þ @2u2

@x1x2

@2u1

@x1x2
þ @

2u2

@x2
2

0BBBBB@

1CCCCCAþ
l2

2M

Dr
@2u1

@x2
1

þ @
2u1

@x2
2

@2u2

@x2
1

þ @
2u2

@x2
2

0BBBBB@

1CCCCCA ¼
l1

2M
Dr

rr � u

� �
þ l2

2M
Dr

Du

� �
ð100Þ
with ðl1;l2Þ 2 Rþ � Rþ. We have d
dt EðtÞ ¼ � l1

M ðkrrk2 þ kr � uk2Þ � l2
M ðkrrk2 þ kruk2Þ 6 0 and d

dt ðkrrk2þ
kr � ukÞ2 ¼ � l1þl2

M ðkDrk2 þ krr � uk2Þ 6 0. These inequalities show that the linear operator
At;l1 ;l2
:
ðL2ðT2ÞÞ3 ! ðL2ðT2ÞÞ3;
q0#At;l1 ;l2

q0 :¼ qðt; �Þ

(

associated to (99) and (100) is a contraction and that At;l1 ;l2

E 
 E. Thus, we can apply point 2 of Theorem 2.2 and (29) is
satisfied. Let us choose ðl1;l2Þ ¼ ða�Dx;0Þ. Since Kerð L

M � Bl1 ;0Þ ¼ E as for first-order modified Eq. (75) (see point 2 of Lemma
4.3), it should be possible to propose another class of low Mach Godunov schemes that do not create any spurious wave and
that do not diffuse the incompressible energy at a time scale or order M by adding to fluxes (35) an appropriate discretized
version of the non-isotropic diffusive operator0 1
q�a�
Dx
2M

0
@2u2

@x1x2

@2u1

@x1x2

0

BBBBBBB@
CCCCCCCA ð101Þ
to compensate the non-isotropic operator a�
Dx
2M

@2u1

@x2
1

;
@2u2

@x2
2

 !T

in first-order modified Eqs. (61) and (62). But, the discretiza-

tion of (101) on any mesh is not natural a priori: thus, the first additional condition introduced in Section 2.5 is not satisfied a
priori. Nevertheless, it should be interesting to test such a modification, at last on the linear wave equation. Let us now
choose ðl1;l2Þ ¼ ð0; a�DxÞ. In that case, it is easy to modify any colocated scheme by adding the discretized version of

the non-isotropic diffusive operator q�a�
Dx
2M

0;
@2u1

@x2
2

;
@2u2

@x2
1

;0

 !T

to fluxes (35) to obtain a scheme that does not create any

spurious wave. Nevertheless, the energy in the well-prepared subspace E will decrease with a time scale of order M, and
the incompressible solution will be close to a constant at a time of order 1: thus, the second additional condition introduced
in Section 2.5 will not be satisfied.

5.7. Formal link with a stabilized colocated incompressible scheme

Let us now discretize the equation
@tqþ
L
M

q ¼
0

f þ mDu

� �
;

qðt ¼ 0; xÞ ¼ q0ðxÞ

8><>: ð102Þ
where f :¼ �gz is a constant source term (g is the gravity and z is the vertical unitary vector) and where mDu is the physical
dissipation (m 2 Rþ� is the kinematic viscosity). Let us discretize on a 2D or 3D Cartesian mesh the acoustic operator L=M in
(102) with linear low Mach Godunov scheme (77), the other terms being discretized with a classical scheme. Thus, the first-
order modified equation is now given by� �8
@tqþ
L
M

q ¼
mrDr

f þ mDu
;

qðt ¼ 0; xÞ ¼ q0ðxÞ

><>: ð103Þ
where mr ¼ mnum :¼ a�Dx
2M . We have d

dt

ffiffiffiffiffiffiffiffiffi
EðtÞ

p
6 kfk. Thus, the energy EðtÞ is bounded when f 2 ðL2ðTdÞÞ1þd and when t 2 ½0; s�with

s < þ1. Moreover, by using the results proposed in Section 5.6, we see that for any mr P 0, Eq. (103) satisfies sufficient con-
dition (28) when f is a constant source term. This implies that estimate (29) is valid. Thus, we can write that r ¼ r� þ OðMÞ

which implies that the dynamic pressure P :¼ r � r�
M=a�

is of order 1 (we have also P ¼ p� p�
q�M

2 by using (18) with

p� ¼ q�a2
� 1þ M

a�
r�

� �
¼ Oðq�a2

� Þ). Thus, we can formally write that dP ¼ a�dr
M

which allows to write that Eq. (103) is formally

equivalent to
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r � u ¼ nDP� M
a�

� �2
@P
@t

;

@u
@t þrP ¼ f þ mDu

8><>: with n ¼ M
a�

� �2

� mr : ð104Þ
Let us now choose mr ¼ k � a�Dx
M

� �2
where k is a constant of order 1 (we recall that Eq. (103) satisfies (28) as soon as mr P 0 and f

is a constant source term: see above). Then, any stationary solution of (104) is solution of
r � u ¼ kDx2DP; ðaÞ
rP ¼ f þ mDu: ðbÞ

(
ð105Þ
Eq. (105) is exactly the modified equation obtained in [21]. The term kDx2DP in (105)(a) is a Brezzi–Pitkäranta type stabil-
ization [34] (see (3.1) in [34]). This term allows to control the checkerboard modes induced by a colocated discretization of
the Stokes system [21]. This is completely coherent with the results proposed in [28].

5.8. Analysis on any mesh

The analysis proposed in Sections 4 and 5 explains with linear arguments the inaccuracy of Godunov type schemes at low
Mach number and justifies Conjecture 5.1 only when the mesh is Cartesian. Indeed, the notion of modified equation asso-
ciated to a numerical scheme is central in our analysis, and it is a priori difficult to define such a notion when the mesh
is not Cartesian. Nevertheless, the central argument concerns the invariance of the well-prepared subspace E for the linear
wave equation (see sufficient condition (28)). This means that, to study the problem on any mesh, we have to generalize the
notion of invariance at the semi-discrete level (i.e. continuous in time and discrete in space). The first step is to define for a
given mesh a discrete well-prepared subspace Ediscrete that is a good approximation of the continuous well-prepared subspace
E. The second step is to study how any discrete initial condition close to Ediscrete is changed by the semi-discrete linear
scheme. We do not study this question in this paper.

Nevertheless, let us say that in the case of the 1D linear Godunov scheme, the work is simple. In [28], we build a discrete
well-prepared subspace Ediscrete that is invariant for the 1D linear Godunov scheme and stationary for the 1D linear low Mach
Godunov scheme. The results proposed in [28] are coherent with the first point of Lemma 4.2 and with Theorem 5.1.

When the mesh is triangular (or tetrahedral) and compatible with periodic boundary conditions, it is possible to define a
discrete well-prepared subspace Ediscrete that is stationary (and, thus, invariant) for the Godunov scheme and for the low Mach
Godunov scheme [35]. Let us underline that when the mesh is Cartesian, we have the same result only in the case of the low
Mach Godunov scheme [35], this result being the discrete version of Lemma 4.3.

These properties justify the results proposed in [36,37]. Indeed, it is proven in [36,37] with a formal asymptotic analysis
and with graph theory arguments that, when the initial conditions are well-prepared in the sense of (5), the 2D non-linear
Godunov scheme does not create any spurious waves when the mesh is a particular triangular mesh and when the spatial
domain X is periodic (or unbounded in each direction). In [35], this result is proven in the linear case on any triangular (or
tetrahedral) mesh.

The fact that the linear or non-linear Godunov scheme with periodic boundary conditions has a behavior on a triangular
or tetrahedral mesh that is not the same than the one obtained on a Cartesian mesh is another argument which emphasizes
the importance of the space dimension in the analysis of the inaccuracy of Godunov type schemes at low Mach number (cf.
Section 3.2 and Lemma 4.2). Indeed, contrary to a Godunov type scheme on a Cartesian mesh, a Godunov type scheme on a
triangular mesh cannot be seen as a simple combination of two 1D Godunov type schemes: in a way, the numerical diffusion
on the velocity equation is ‘‘more” isotropic when the mesh is triangular (or tetrahedral) (we remind that the loss of invari-
ance of E in Lemma 4.2 is linked to the fact that the velocity numerical diffusion in (60) is non-isotropic).

Nevertheless, this particular property of Godunov type schemes obtained on a triangular or tetrahedral mesh could be
limited although it is really remarkable. Indeed, it is obtained by supposing that the spatial domain X is periodic or un-
bounded. When it is not the case, the proof in [35] is not valid. As a consequence, Godunov type schemes on any triangular
or tetrahedral mesh with non-special boundary conditions on @X could create spurious waves at low Mach number as on a
Cartesian mesh. Numerical results proposed in Section 7.2 seem to confirm this assertion.

6. A weaker sufficient condition to avoid the creation of spurious waves at low Mach number

To satisfy (29), we have constructed the linear low Mach Godunov scheme in Section 5 in such a way the well-prepared
subspace E is invariant for first-order modified Eq. (33) (cf. condition (28)). In fact, we can propose a weaker sufficient con-
dition that only imposes the invariance of a family of subspaces EMDx that are not E when MDx – 0 but that are close to E
when MDx� 1. Indeed, we can construct F low Mach X;L=M

x in such a way, for any ðM;DxÞ 2 Rþ� � Rþ such that MDx� 1, there
exists a subspace EMDx of ðL2ðTdÞÞ1þd that satisfies
EMDx 	 E? ¼ ðL2ðTdÞÞ1þd
; ðaÞ

8q 2 EMDx : kq� Pqk 6 MDxkqk; ðbÞ
8q0 2 EMDx : qðt P 0Þ 2 EMDx ðcÞ

8><>: ð106Þ
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since point 2 of Theorem 2.2 is valid when (28) is replaced by weaker condition (106). This weaker sufficient condition could
be a starting point to propose other modifications of the Godunov scheme than the one proposed in Conjecture 5.1 (see
scheme (82) that is equivalent to scheme (83)) or to study the influence of the nth-order terms ðn > 1Þ of the modified equa-
tion. To obtain (29) with (106), we use the following lemma (whose proof is in Appendix A):

Lemma 6.1. Let AlP0 be a family of linear applications on a Hilbert space H and let us suppose that E and El are vector subspaces
of H such that E 	 E? ¼ El 	 E? ¼ H. Let us define the Hilbertian norm k � k and another norm jjj � jjj in H possibly different to k � k.
Then, the conditions
9ðk; eÞ 2 Rþ� � Rþ� such that 8l 2 ½0; e½: maxðkAlk; jjjAljjjÞ 6 k; ðaÞ
8q 2 El : jjð1� PÞqk 6 ljjjqjjj; ðbÞ
AlEl 
 El ðcÞ

8><>: ð107Þ
imply that
8q 2 H; 8l 2 ½0; e½: kð1� PÞAlqk 6 2kljjjPlqjjj þ kkð1� PÞqk ð108Þ

where P and Pl are respectively the orthogonal projection onto E and the projection onto El along E?. By supposing also that there
exists b > 0 such that 8q 2 H : jjjqjjj 6 bkqk, we obtain the more precise inequality
8q 2 H; 8l 2 ½0;minðe; b�1Þ½: kð1� PÞAlqk 6 2kbl
1� bl

kqk þ kkð1� PÞqk: ð109Þ
This proves that when l� 1, we have
8q 2 H : kð1� PÞqk ¼ OðMÞ ) kð1� PÞAlqk ¼ OðlÞ þ OðMÞ ð110Þ
that is to say
8q 2 H : kð1� PÞqk ¼ OðMÞ ) kð1� PÞAlqk ¼ OðMÞ
when l ¼ OðMÞ � 1.

Condition (107)(a) is natural since, in the context of the paper, Al is supposed to converge when l goes to zero to the
bounded linear operator Að0;L=MÞ

t defined with (24) and associated to the linear acoustic operator L=M (Að0;L=MÞ
t is an isometry

for the H1-norm jjj � jjj ¼ k � kH1 ). Condition (107)(b) means that El¼0 ¼ E (this is a consequence of E 	 E? ¼ El 	 E? ¼ H).
Then, El can be seen as the ‘‘sum” of E and of a ”perturbation” �l of order ”OðlÞ” when l� 1. We introduce the second norm
jjj � jjj because El may need more regularity than E (see the example below). In finite dimension, we do not need to introduce
this second norm. Moreover, we do not suppose in Lemma 6.1 that AlE 
 E when l 2 ½0; e½. Indeed, if AlE 
 E when
l 2 ½0; e½, condition (28) would be satisfied for any l 2 ½0; e½ and we could apply point 2 of Theorem 2.2 to obtain (29). Let
us note that condition (107)(b) is weaker than 8q 2 H : kðPl � PÞqk 6 ljjjqjjj. To summarize, since E is the kernel of the
acoustic linear operator L=M – that is to say 8q 2 E : Að0;L=MÞ

t q ¼ q –, the conditions on El and Al mean that this kernel is
not really pertubed – that is to say El ’ E and 8q 2 El : jjAlq� qjj ’ 0 when l� 1 – even if zero is not an eigenvalue of
F low Mach X;L=M

x when Dx – 0. For example, let us define the system
@tqþ
L
M

q ¼ Blq;

qðt ¼ 0; xÞ ¼ q0ðxÞ

8<: ð111Þ
with
Blq ¼ l
2M

0
@2u1

@x2
1

þ 2
@2u2

@x1x2

@2u2

@x2
2

0BBBBB@

1CCCCCA: ð112Þ

	

We associate to PDE (111) the linear application At;l :

ðL2ðT2ÞÞ3 ! ðL2ðT2ÞÞ3;
q0#At;lq0 :¼ qðt; �Þ: : We verify that d

dt EðtÞ ¼ � l
M kr � uk

2
6 0.

Thus, At;l is a contraction on H ¼ ðL2ðT2ÞÞ3 for the Hilbertian norm k � k ¼ k � kL2 . In other words, we have kAt;lk 6 1. The sec-
ond norm jjj � jjj is defined with the norm in ðH1ðT2ÞÞ3 and is now noted k � kH1 . We admit that (111) is well-posed in
L1ð½0;þ1½; ðHsðT2ÞÞ3Þ where s 2 N is large enough and that liml!0kAt;l �Að0;L=MÞ

t kH1 ¼ 0. Thus, since kAð0;L=MÞ
t kH1 ¼ 1, there

exists k > 1 and e > 0 such that for any l 2 ½0; e½, we have kAt;lkH1 6 k. This proves that condition (107)(a) is satisfied.
We also verify that the subspace
El :¼ q :¼
r

u1

u2

0@ 1A 2 ðL2ðT2ÞÞ3such that q ¼ q̂þ l
2a�

@u2

@x2
0
0

0BB@
1CCAwhere q̂ :¼

r�
u1

u2

0@ 1A 2 E
8>><>>:

9>>=>>;
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is the kernel of the operator L
M � Bl. Thus, At;lEl ¼ El and condition (107)(c) is satisfied. Moreover, we have

El 	 E? ¼ ðL2ðT2ÞÞ3 and q̂ ¼ Pq since q̂ 2 E and @u2
@x2
; 0;0

� �T
2 E?, and we have
8q 2 El : jjð1� PÞqjj ¼ l
2a�

@u2

@x2
; 0;0

� �T
�����

�����
�����

����� 6 l
2a�
jjqjjH1
where P is the Hodge projection (see Lemma 2.1 for the definition of the Hodge decomposition). This proves that condition
(107)(b) is satisfied (with l replaced by l=ð2a�Þ). Then, we can apply Lemma 6.1 to obtain inequality (108) (with l replaced
by l=ð2a�Þ). But, since there does not exist b > 0 such that 8q 2 ðL2ðT2ÞÞ3 : kqkH1 6 bkqk, we cannot rigorously deduce esti-

mate (110) from (108) when l� 1. Nevertheless, since Plq ¼ Pqþ l
2a�

@u2
@x2
;0;0

� �T
, we have
kPlqkH1 6 kPqkH1 þ l
2a�

@u2

@x2
;0;0

� �T
�����

�����
�����

�����
H1

6 kPqkH1 þ l
2a�
kqkH2
when q is enough regular (q 2 ðHsðT2ÞÞ3 with s P 2), k � kH2 being the norm in ðH2ðT2ÞÞ3. Thus, we can replace inequality
(108) with
8q 2 ðH2ðT2ÞÞ3; 8l 2 ½0; e½: kð1� PÞAt;lqk 6 kl
a�
kPqkH1 þ l

2a�
kqkH2

� �
þ kkð1� PÞqk: ð113Þ
We deduce from inequality (113) that estimate (29) is satisfied when l ¼ a�MDx and M 2 ½0; e=ða�DxÞ½. To summarize, we
have obtained that when numerical diffusion operator (112) is given by
BMDxq ¼ a�
Dx
2

0
@2u1

@x2
1

þ 2
@2u2

@x1x2

@2u2

@x2
2

0BBBBB@

1CCCCCA; ð114Þ
estimate (29) is valid for PDE (111) when M � 1 and when the initial condition q0 is enough regular (q0 2 ðHsðT2ÞÞ3 with
s P 2). Diffusion operator (114) is similar to operator (89) obtained with the linear Roe–Turkel scheme except on the pres-
sure equation, and it defines a scheme of type (83). Nevertheless, it is a priori difficult to use (114) to propose another simple
class of low Mach Godunov schemes in the non-linear case. Indeed, as for the Roe–Turkel scheme (see proof of point 1 of Prop-
osition 5.1 in Appendix C), it is difficult to find a basic modification to apply to a non-linear Godunov type scheme in such a
way the first-order modified equation is given by (111) and (114) in the linear case: in other words, the first of the two addi-
tional conditions introduced in Section 2.5 is not satisfied. At the opposite, the non-linear low Mach Godunov type schemes
proposed in Conjecture 5.1 satisfy these two additional conditions.

7. Numerical results

We show numerical results that prove that the Low Mach X schemes proposed in Section 5.4 (see also Conjecture 5.1) are
accurate at low Mach number when the X scheme is a Roe scheme [1] or a VFRoe scheme [2,3]. In the first subsection, we
solve the compressible Euler system in an unbounded (physical) domain (but, of course, in a bounded numerical domain); in
the second subsection, we solve the compressible Navier–Stokes system in a bounded (physical and numerical) domain.

Let us underline that boundary conditions are not taken into account from a theoretical point of view in this paper
although it is an important question. In particular, some numerical results seem to show that the low Mach Roe (or VFRoe)
scheme may not be stable when the upwinding on the pressure gradient is also deleted on all the interfaces that belong to the
boundary of the (numerical or physical) domain (we recall that the stability results proposed in Lemmas 5.1 and 5.2 are pro-
ven when the domain is periodic). Thus, to avoid such potential numerical instabilities, we do not change the Roe (or VFRoe)
numerical fluxes on the interfaces that belong to the boundary of the domain: numerical results proposed in this section
seem to show that this stabilizes the low Mach Roe (or VFRoe) scheme without changing the accuracy properties obtained
in a periodic domain at low Mach number.

7.1. Compressible Euler system in an unbounded physical domain

The test-case consists in a flow in an unbounded 2D channel with a bump defined by
xbump
2 ðx1Þ ¼

1
10
� ½1� cosððx1 � 1ÞpÞ� if x1 2 ½1;3�;¼ 0 if x1 R ½1;3�:
The fluid is a perfect gas that is to say p ¼ qRT and h ¼ cRT
c�1 where R ¼ 287 J kg�1 K�1 and c ¼ 1;4. Although the physical

domain is unbounded, the (numerical) domain X – where the simulation is done – is of course bounded; it is included into
the domain ½0;4� � ½0;1�. The unboundedness of the physical domain is taken into account through the boundary conditions
on x1 ¼ 0 and x1 ¼ 4 where the flow is supposed to be defined by the flow at the infinity. The boundary condition on x1 ¼ 0 is
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defined by ðp; hÞ ¼ ðp0;h0Þ and u ¼ u0 :¼ ðuin;0Þ with p0 ¼ 105 Pa and h0 ¼ 25 kJ kg�1. The velocity uin is a strictly positive
constant such that the initial Mach number M :¼ ku0kffiffiffiffiffiffiffiffiffiffiffi

cp0=q0

p is equal to 10�2 or 10�3: here, we have the relation

uin ¼ M � 102 m s�1. The boundary condition on x1 ¼ 4 is defined by p ¼ p0. The boundary condition on xbump
2 ðx1Þ and

x2 ¼ 1 is a slipping boundary condition. The initial condition is given by ðp;h;uÞ ¼ ðp0;h0;u0Þ. We test the low Mach Roe
scheme and the low Mach VFRoe scheme proposed in Section 5.4 with a quadrangular or triangular mesh of only 40 � 10 cells.

7.1.1. Results on a quadrangular mesh
The iso-Mach and iso-pressure lines on Figs. 1 and 2 show that the solution given by the Roe scheme is not correct (see

Fig. 11 in [38] for a correct solution). At the opposite, Figs. 3–6 and 8 show that the solutions given by the low Mach Roe
Fig. 1. Iso-Mach, Roe scheme, Mach = 10�2.

Fig. 2. Iso-pressure, Roe scheme, Mach = 10�2.

Fig. 3. Iso-Mach, Low Mach Roe scheme, Mach = 10�2.

Fig. 4. Iso-pressure, Low Mach Roe scheme, Mach = 10�2.

Fig. 5. Iso-Mach, Low Mach Roe scheme, Mach = 10�3.

Fig. 6. Iso-Mach, Low Mach VFRoe scheme, Mach = 10�2.
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scheme and the low Mach VFRoe scheme are close to the incompressible solution on a quadrangular mesh. Figs. 7 and 8 show
that the result is better with the low Mach VFRoe scheme than with the low Mach Roe scheme on the density field: this is per-
haps due to the fact that the low Mach Roe scheme is built by also deleting the upwinding of the discretization of the con-
vective operator r � ðqu� uÞ which is not the case with the low Mach VFRoe scheme (see Conjecture 5.1 and Section 5.4).
Nevertheless, the result on the density field is not really important since any OðMÞ density perturbation does not perturbe
the velocity and pressure fields (see well-prepared initial conditions (5)). Let us underline that the results on Figs. 3 and 5
Fig. 7. Iso-density, Low Mach Roe scheme, Mach = 10�2.

Fig. 8. Iso-density, Low Mach VFRoe scheme, Mach = 10�2.

Fig. 9. pmax�pmin
pmax

ðMÞ, Cartesian mesh.

Fig. 10. Residual, Cartesian mesh, Mach = 10�2.
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show that the solution given by the Low Mach Roe scheme does not depend on the Mach number M: of course, any incom-
pressible solution has to satisfy this property.

Fig. 9 shows that the pressure fluctuations are of order M with the Roe scheme and of order M2 with the low Mach Roe
scheme as with the Roe–Turkel or VFRoe–Turkel schemes [7,8]. This figure confirms that the Roe scheme creates spurious
pressure waves of order OðMDxÞ and that the low Mach Roe scheme does not create such spurious pressure waves. Figs. 10
and 11 show the residuals. Fig. 10 shows that the Roe scheme converges. Nevertheless, it converges toward a bad solution
(see Figs. 1 and 2). We can see on Fig. 10 that the low Mach VFRoe scheme needs more iterations to converge to the stationary
solution than the low Mach Roe scheme. Fig. 11 shows that the more the Mach number is close to zero, the more it is difficult
Fig. 12. Iso-Mach, Low Mach VFRoe scheme, Mach = 10�2.

Fig. 13. Iso-pressure, Low Mach VFRoe scheme, Mach = 10�2.

Fig. 14. Iso-density, Low Mach VFRoe scheme, Mach = 10�2.

Fig. 15. Iso-Mach, VFRoe scheme, Mach = 10�2.

Fig. 11. Residual, Cartesian mesh, Mach = 10�2 and 10�3.



Fig. 16. Iso-pressure, VFRoe scheme, Mach = 10�2.

Fig. 17. Iso-density, VFRoe scheme, Mach = 10�2.
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to converge toward the incompressible solution. Of course, this is due to the existence of two different time scales in com-
pressible Euler system (1) when the Mach number goes to zero.

7.1.2. Results on a triangular mesh
We have also tested the Low Mach VFRoe scheme on a triangular mesh when M ¼ 10�2. Figs. 12–14 confirm the previous

results. Moreover, Figs. 15–17 confirm that Godunov type schemes do not suffer of any inaccuracy at low Mach number on
triangular (or tetrahedral) mesh when the domain is periodic or unbounded [35–37] (see also Section 5.8). Fig. 18 shows that
the low Mach VFRoe scheme on a triangular mesh needs more iterations than the VFRoe scheme to converge. We can also note
that the low Mach VFRoe scheme converges with less iterations on a triangular mesh than on a quadrangular mesh (compare
Figs. 10 and 18).

7.2. Compressible Navier–Stokes system in a bounded physical domain

We now study the 2D natural convection test-case studied in [39–41] by solving the compressible Navier–Stokes system
with a gravity term ðg ¼ 9:81 m s�2Þ in a bounded (physical) domain X. The domain X is a 2D square whose area is equal to
L � L with L ¼ 1:528� 10�3 m . The fluid is the perfect gas defined in Section 7.1 with l ¼ 1:619� 10�6 kg m�1 s�1 (viscosity)
and k ¼ 2:29� 10�3 W m�1 K�1 (conductivity). The boundary conditions are the following:
x1 ¼ 0 : T ¼ 283:15 K and u ¼ 0 m s�1;

x1 ¼ L : T ¼ 263:15 K and u ¼ 0 m s�1;

x2 ¼ 0 : @x2 T ¼ 0 K m�1 and u ¼ 0 m s�1;

x2 ¼ L : @x2 T ¼ 0 K m�1 and u ¼ 0 m s�1:

8>>><>>>: ð115Þ
We can deduce from the previous physical quantities that the flow is such that M ’ 10�4 (Mach number), Ra ’ 103 (Ray-
leigh number) and Pr ’ 0:71 (Prandtl number), which gives a Reynolds number Re :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ra=Pr

p
of about 37. The convective

part of the system is discretized with the Roe scheme or with the low Mach Roe scheme proposed in Section 5.4. The physical
diffusive part of the system is discretized with a finite volume type scheme.
Fig. 18. Residual, Triangular mesh, Mach = 10�2.



Fig. 19. Iso-Mach, Roe scheme, Cartesian mesh.

Fig. 20. Iso-Mach, Low Mach Roe scheme, Cartesian mesh.

Fig. 21. 1st triangular mesh.
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Fig. 22. Iso-Mach, Roe scheme, 1st triangular mesh.

Fig. 23. 2D triangular mesh.

Fig. 24. Iso-Mach, Roe scheme, 2D triangular mesh.
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Fig. 27. Iso-Mach, Low Mach Roe scheme, 3D triangular mesh.
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one of Figs. 21 and 23. Nevertheless, the proof in [36,37] does not take into account any boundary conditions. In the same
way, the generalization of this proof to any type of triangular or tetrahedral mesh proposed in [35] does not take into account
any boundary condition. Of course, boundary conditions (115) – especially the Dirichlet boundary condition applied to the
temperature in the energy equation – are essential for the natural convection problem studied in this subsection, which per-
haps explains why the numerical results are not good on Figs. 24 and 26 although the mesh is triangular. At the opposite, the
low Mach Roe scheme remains accurate when the mesh is triangular (see Fig. 27) as well as when the mesh is Cartesian (see
Fig. 20): these numerical results are a good surprise since all the theoretical results proposed in this paper are obtained for a
periodic or unbounded domain X.

8. Conclusion

We have shown in the linear case that the convergence of a compressible Euler solution toward an incompressible Euler
solution when the Mach number goes to zero is a direct consequence of the invariance of the well-prepared subspace
E :¼ q :¼
r

u

� �
2 ðL2ðTdÞÞ1þd such that rr ¼ 0 and r � u ¼ 0

	 


for the linear wave equation. Indeed, this invariance property avoids the creation of spurious (pressure and velocity) waves
that are responsible for the loss of accuracy of Godunov type schemes at low Mach number in the non-linear case. Then, we
have proposed to characterize a compressible colocated X scheme of Godunov type or not as being free of any spurious wave
at low Mach number when the first-order modified equation associated to this X scheme applied to the linear wave equation
preserves the well-prepared subspace E or a subspace EMDx that is an appropriate approximation of E when M � 1 and
MDx� 1.

Then, we have shown that a non-linear Godunov type scheme applied to the compressible Euler system on a 2D or 3D
Cartesian mesh cannot be accurate at low Mach number because the first-order modified equation associated to the linear-
ized Godunov scheme without convection does not preserve the well-prepared subspace E in 2D and in 3D and transfers
energy of order 1 from the well-prepared subspace E toward the acoustic space E? at an acoustic time scale. This loss of
invariance is linked to the fact that the numerical diffusion operator in the velocity equation is non-isotropic. Nevertheless,
the well-prepared subspace E remains invariant in 1D. This underlines that Godunov type schemes remain accurate at low
Mach number in 1D. We have also underlined the importance of the space dimension with a formal analysis of the Roe
scheme applied to the compressible Euler system. These statements emphasize that, firstly, the numerical diffusive terms
on the mass and energy equations are not responsible for the loss of invariance in 2D and 3D at low Mach number. Secondly,
this underlines that the inaccuracy can be explained (at least partly) with linear arguments and without any convection
operator. Nevertheless, the non-linearities can amplify this inaccuracy through, for example, the non-linear convective oper-
ator and, thus, through shear waves. Moreover, boundary conditions can also contribute to the loss of invariance of the well-
prepared subspace E.

At the opposite, by deleting the numerical diffusion on the velocity equation of the first-order modified equation, we re-
cover the invariance of the well-prepared subspace E in the linear case. As a consequence, we have proposed in the non-lin-
ear case and on any mesh the class of low Mach X schemes where X is a colocated scheme of Godunov type or not. A low Mach
X scheme is simply built by centering the discretization of the pressure gradient, the rest of the scheme being unchanged. This
simple modification is also justified by the fact that Roe–Turkel type schemes [4–9,13], the Roe scheme with pressure cor-
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rection [10], the AUSM+-up scheme [12] or the colocated schemes proposed in [16–18] are similar or identical at low Mach
number to a low Mach X scheme. Moreover, by studying the L2 stability in the linear case, we have noted that the time dis-
cretization of the low Mach Godunov scheme may be explicit as well as implicit (we recall that the Roe–Turkel scheme has to
be implicited). At last, 2D numerical results show that the low Mach Roe scheme and the low Mach VFRoe scheme are stable
and accurate at low Mach number on quadrangular and triangular meshes. Nevertheless, we emphasize that the low Mach X
schemes are designed to give stable and accurate results only at low Mach number. But, it should be easy to adjust the delet-
ing of the upwinding of the pressure gradient to be able to simulate flows whose Mach number is not everywhere or every-
time close to zero. At last, let us underline that we have formally shown that there exists a link between the low Mach
Godunov scheme and a colocated incompressible scheme stabilized with a Brezzi–Pitkäranta type stabilization [21].
Appendix A. Proof of Lemmas 2.4 and 6.1

Proof of Lemma 2.4: Since A is a linear isometry, there is conservation of the inner product that is to say
8ðq1; q2Þ 2 H�H : hAq1;Aq2i ¼ hq1; q2i. Thus, by taking ðq1; q2Þ 2 E � E?, we obtain that hAq1;Aq2i ¼ 0. Thus, we have
Aq2 2 ðAEÞ

? that is to say Aq2 2 E? since A is supposed to be surjective. This proves that AE? 
 E?. h

Proof of Lemma 6.1: Let us choose q 2 H. We have
ð1� PÞAlq ¼ ð1� PÞAlPlqþ ð1� PÞAlð1� PlÞq
where Pl is the projection onto El along E?. Thus, we have
kð1� PÞAlqk 6 kð1� PÞAlPlqk þ kð1� PÞAlð1� PlÞqk:
We know that AlPlq 2 El since AlEl 
 El. Thus, we have
kð1� PÞAlPlqk 6 ljjjAlPlqjjj:
Moreover, kð1� PÞAlð1� PlÞqk 6 kAlð1� PlÞqk since P is an orthogonal projection. And by using the fact that Al is
bounded by k for the norm k � k, we obtain that kð1� PÞAlð1� PlÞqk 6 kkð1� PlÞqk. And since
kð1� PlÞqk 6 kðP� PlÞqk þ kð1� PÞqk, we can write that
kð1� PÞAlqk 6 lkjAlPlqkj þ kkðP� PlÞqk þ kkð1� PÞqk:
Moreover, we have P ¼ PPl since P and Pl are projections along the same subspace. Then, we have ðP� PlÞq ¼ ðP� 1ÞPlq
that implies kðP� PlÞqk 6 ljjjPlqjjj since Plq 2 El. Thus, we obtain that
kð1� PÞAlqk 6 lðkjAlPlqjjj þ kjjjPlqjjjÞ þ kkð1� PÞqk 6 lðjjjAljjj þ kÞjjjPlqjjj þ kkð1� PÞqk
6 2kljjjPlqjjj þ kkð1� PÞqk when l 2 ½0; e½
by using also the fact that Al is bounded by k for the second norm jjj � jjj. This gives inequality (108). Moreover, we have
Plq ¼ PPlqþ ð1� PÞPlq ¼ Pqþ ð1� PÞPlq ð116Þ
since P ¼ PPl. Let us now suppose that there exists b > 0 such that 8q 2 H : jjjqjjj 6 bkqk. Then, inequality (107)(b) and rela-
tion (116) imply that jjjPlqjjj 6 bkPqk þ bljjjPlqjjj that is to say jjjPlqjjj 6 b

1�bl kPqk when l 2 ½0;minðe; b�1Þ½. We obtain
inequality (109) by noting that kPqk 6 kqk since P is an orthogonal projection. h
Appendix B. Proof of Lemmas 5.1 and 5.2

Here, we define a :¼ a�=M to simplify the notations. A necessary condition for L2 stability is that jk�j 6 1 where k� are the
eigenvalues of the amplification matrix of each scheme in the Fourier space: this condition is the von Neumann necessary
condition [27].

Proof of Lemma 5.1: In the Fourier space, the amplification matrix of explicit scheme (78) is given by
Gexp
k ðDt;jÞ ¼

1� 2aDt
Dx

jr sin2 kDx
2

� �
� aDt

Dx
i sinðkDxÞ

� aDt
Dx

i sinðkDxÞ 1� 2aDt
Dx

ju sin2 kDx
2

� �
0BBB@

1CCCA ð117Þ
(i is the imaginary number such that i2 ¼ �1). We have
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detðGexp
k ðDt;jÞ � kIÞ ¼ ð1� kÞ2 � ð1� kÞ2aDt

Dx
ðjr þ juÞ sin2 kDx

2

� �
þ 4

aDt
Dx

� �2

jrju sin4 kDx
2

� �
þ aDt

Dx

� �2

sinðkDxÞ2

¼ ð1� kÞ2 � ð1� kÞ2aDt
Dx
ðjr þ juÞ sin2 kDx

2

� �
þ 4

aDt
Dx

� �2

� sin2 kDx
2

� �
jrju sin2 kDx

2

� �
þ cos2 kDx

2

� �� �
¼ ð1� kÞ2 � ð1� kÞ2aDt

Dx
ðjr þ juÞ sin2 kDx

2

� �
þ 4

aDt
Dx

� �2

� sin2 kDx
2

� �
ðjrju � 1Þ sin2 kDx

2

� �
þ 1

� �
¼ k2 þ 2k

aDt
Dx
ðjr þ juÞ sin2 kDx

2

� �
� 1

� �
þ 1þ 2

aDt
Dx

� sin2 kDx
2

� �
2

aDt
Dx

ðjrju � 1Þ sin2 kDx
2

� �
þ 1

� �
� ðjr þ juÞ

	 


that is to say
det Gexp
k ðDt;jÞ � kI

� �
¼ k2 þ 2k½lðjr þ juÞh2 � 1� þ 1þ 2lh2f2l½ðjrju � 1Þh2 þ 1� � ðjr þ juÞg
with
l ¼ aDt
Dx

;

h ¼ j sin
kDx

2

� �
j:

8>><>>:

The discriminant D0 of the polynomial k#detðGexp

k ðDt;jÞ � kIÞ is given by
D0 ¼ ½lðjr þ juÞh2 � 1�2 � 1� 2lh2f2l½ðjrju � 1Þh2 þ 1� � ðjr þ juÞg

¼ l2ðjr þ juÞ2h4 þ 1� 2lðjr þ juÞh2 � 1� 4l2h2½ðjrju � 1Þh2 þ 1� þ 2lh2ðjr þ juÞ

¼ l2ðjr þ juÞ2h4 � 4l2h2½ðjrju � 1Þh2 þ 1� ¼ 4l2h2 ðjr þ juÞ2

4
h2 � ðjrju � 1Þh2 � 1

" #

¼ 4l2h2 ðjr � juÞ2

4
þ 1

" #
h2 � 1

( )
:

Then, the eigenvalues kþ and k� are given by
k� ¼ �½lðjr þ juÞh2 � 1� � 2lh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjr � juÞ2

4
þ 1

" #
h2 � 1

vuut ¼ 1� lh2 ðjr þ juÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðjr � juÞ2 þ 4�h2 � 4

h2

s24 35

that is to say
k� ¼ 1� lðjr þ juÞh2 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðjr � juÞ2 þ 4�h2 � 4

ðjr þ juÞ2h2

s" #
: ð118Þ
� First case: jr 2 Rþ� and ju ¼ jr . Then
k� ¼ 1� 2ljrh
2 1� i

jr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

h2

s24 35:

Thus
jk�j2 ¼ 1þ 4l2h4j2
r � 4lh2jr þ 4l2h2ð1� h2Þ
that is to say
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jk�j2 ¼ 1þ 4lh2fl½1� h2 þ h2j2
r � � jrg: ð119Þ
This proves that jk�j < 1 when l 6 jr

1�h2þh2j2
r
. But
1� h2 þ h2j2
r 6 maxð1;j2

r Þ:
Thus, the stability condition may be written with l 6 jr
maxð1;j2

r Þ
that is to say with
l 6 minðjr;j�1
r Þ:
� Second case: jr 2 Rþ� and ju ¼ 0. Then
k� ¼ 1� ljrh
2 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj2

r þ 4Þh2 � 4
j2

r h
2

s" #
: ð120Þ
Let us choose h2 2 0; 4
j2

r þ4

h i
. Then
k� ¼ 1� ljrh
2 1� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� ðj2

r þ 4Þh2
q

jrh

24 35:

Thus
jk�j2 ¼ ð1� lh2jrÞ2 þ l2h2½4� ðj2
r þ 4Þh2� ¼ 1þ l2h4j2

r � 2lh2jr þ 4l2h2 � l2h4j2
r � 4l2h4
that is to say
jk�j2 ¼ 1þ 2lh2½2lð1� h2Þ � jr �: ð121Þ� �

Thus, the stability condition is given by l 6 jr

2ð1� h2Þ
that is to say l 6 jr

2 . Let us now choose h2 2 4
j2

r þ 4
;1 . Then k� 2 R.

But, we have
ðj2

r þ 4Þh2 � 4
j2

r h
2 ¼ j2

r h
2 þ 4ðh2 � 1Þ

j2
r h

2 2 ½0;1� since h2 � 1 < 0. Thus, 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj2

r þ 4Þh2 � 4
j2

r h
2

s
> 0 and the stability con-

dition applied to (120) is given by
l 6 2

jrh
2 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj2

r þ 4Þh2 � 4
j2

r h
2

s" # :
But, the function h2#h2 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj2

r þ 4Þh2 � 4
j2

r h
2

s" #
is positive and bounded by 2 on

4
j2

r þ 4
;1

� �
. Thus, the stability condition is

given by
l 6 1
jr
:

To summarize, we have obtained the stability condition
l 6 min
jr

2
;

1
jr

� �
: �
Proof of Lemma 5.2: The eigenvalues k� of the amplification matrix Gimp
k ðDt;jÞ associated to implicit scheme (81) are such

that 1=k� are the eigenvalues of
½Gimp
k ðDt;jÞ��1 ¼

1þ 2aDt
Dx

jr sin2 kDx
2

� �
aDt
Dx

i sinðkDxÞ

aDt
Dx

i sinðkDxÞ 1þ 2aDt
Dx

ju sin2 kDx
2

� �
0BBB@

1CCCA: ð122Þ
The eigenvalues 1=k� of ½Gimp
k ðDt;jÞ��1 are deduced from those of Gexp

k ðDt;jÞ by replacing l with �l in formula (118). Thus,
we have
k� ¼ 1

1þ lðjr þ juÞh2 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðjr � juÞ2 þ 4�h2 � 4

ðjr þ juÞ2h2

s" # :
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� First case: jr 2 Rþ� and ju ¼ jr . We deduce from (119) that
jk�j2 ¼ 1
1� 4lh2f�l½1� h2 þ h2j2

r � � jrg
¼ 1

1þ 4lh2fl½1� h2 þ h2j2
r � þ jrg

:

Thus, we have jk�j 6 1 for any l P 0.

� Second case: jr 2 Rþ� and ju ¼ 0. Let us choose h2 2 ½0; 4
j2

r þ4�. Then, we deduce from (121) that
jk�j2 ¼ 1
1� 2lh2½�2lð1� h2Þ � jr �

¼ 1
1þ 2lh2½2lð1� h2Þ þ jr �

:

Thus, we have jk�j 6 1 for any l P 0. Let us now choose h2 2 4
j2

r þ4
;1

h i
. Then, k� 2 R since
k� ¼ 1

1þ ljrh
2 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj2

r þ 4Þh2 � 4
j2

r h
2

s" # :
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffis" # � �
But, we know that the function h2#h2 1� ðj2
r þ 4Þh2 � 4

j2
r h

2 is positive on
4

j2
r þ 4

;1 (see proof of Lemma 5.1). Thus, we
have also 0 < k� 6 1 for any l P 0. h

Remark on the von Neumann condition when jr 2 Rþ� and ju ¼ jr: The von Neumann condition is a necessary condition
to obtain the L2 stability: see condition S of the Kreiss matrix theorem (see [27], p. 74). Nevertheless, we can prove that
PGexp

k P�1 is diagonale where Gexp
k is given by (117) and where
P ¼ P�1 ¼ 1ffiffiffi
2
p

1 1
1 �1

� �

when sinðkDxÞ – 0. Moreover, when sinðkDxÞ ¼ 0, we have kþ ¼ k� :¼ k and Gk ¼ kI (where I is the identity matrix). This
proves that condition S of the Kreiss matrix theorem is satisfied for the amplification matrix Gexp

k . We obtain the same result
for the amplification matrix Gimp

k defined with (122) since Gimp
k is also diagonalizable with P.

Appendix C. Proof of Proposition 5.1

Point 1: The Roe–Turkel scheme applied to the linear wave equation
@tqþ
L
M

q ¼ 0 ð123Þ
is given by
d
dt

qi;j þ
bF 1;iþ1=2;j � bF 1;i�1=2;j

Dx1
þ
bF 2;i;jþ1=2 � bF 2;i;j�1=2

Dx2
¼ 0 ð124Þ
where
bF 1;iþ1=2;j ¼ bA1
qi;j þ qiþ1;j

2
� 1

2
bP�1jbPbA1jðqiþ1;j � qi;jÞ;

bF 2;i;jþ1=2 ¼ bA2
qi;j þ qi;jþ1

2
� 1

2
bP�1jbPbA2jðqi;jþ1 � qi;jÞ

8>><>>: ð125Þ
with
bA1 ¼
a�
M

0 1 0
1 0 0
0 0 0

0B@
1CA and bA2 ¼

a�
M

0 0 1
0 0 0
1 0 0

0B@
1CA:
In (125), bP is the Turkel preconditioning matrix [14,15] defined with
bP ¼ M2 0 0
0 1 0
0 0 1

0B@
1CA:

2
0 1
The spectral decomposition of bPbA1 ¼ a�
M

0 M 0
1 0 0
0 0 0

@ A is given by
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k1 ¼ �a� : r1 ¼
ffiffiffi
M
2

q 1
� 1

M

0

0B@
1CA; l1 ¼

ffiffiffi
M
2

q 1
M

�1
0

0B@
1CA

k2 ¼ a� : r2 ¼
ffiffiffi
M
2

q 1
1
M

0

0B@
1CA; l2 ¼

ffiffiffi
M
2

q 1
M

1
0

0B@
1CA

k3 ¼ 0 : r3 ¼ l3 ¼
0
0
1

0B@
1CA:

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

Thus
jbPbA1j ¼ a� � ðr1 � l1 þ r2 � l2Þ ¼
a�M

2

1
M �1 0
� 1

M2
1
M 0

0 0 0

0B@
1CAþ

1
M 1 0
1

M2
1
M 0

0 0 0

0B@
1CA

264
375 ¼ a�

1 0 0
0 1 0
0 0 0

0B@
1CA:
Finally, we obtain
bP�1jbPbA1j ¼
a�
M

1
M 0 0
0 M 0
0 0 0

0B@
1CA: ð126Þ
A similar calculation gives
bP�1jbPbA2j ¼
a�
M

1
M 0 0
0 0 0
0 0 M

0B@
1CA: ð127Þ
Thus, scheme (124) and (125) can be rewritten with
d
dt

qi;j þ bA1
qiþ1;j � qi�1;j

2Dx1
þ bA2

qi;jþ1 � qi;j�1

2Dx2

¼ � � � ¼ a�
2M
�

1
M 0 0
0 M 0
0 0 0

0B@
1CA qiþ1;j � 2qi;j þ qi�1;j

Dx1
þ

1
M 0 0
0 0 0
0 0 M

0B@
1CA qi;jþ1 � 2qi;j þ qi;j�1

Dx2

264
375: ð128Þ
We conclude by noting that the first-order modified equation associated to scheme (128) is given by (61) where Bjq is de-
fined with (89).

Point 2: The Roe scheme with pressure correction applied to linear wave equation (123) is defined with (124) and
bF 1;iþ1=2;j ¼ bA1
qi;j þ qiþ1;j

2
� 1

2
jbA1jðqiþ1;j � qi;jÞ þ

a�
2M

0
u1;iþ1;j � u1;i;j

0

0B@
1CA;

bF 2;i;jþ1=2 ¼ bA2
qi;j þ qi;jþ1

2
� 1

2
jbA2jðqi;jþ1 � qi;jÞ þ

a�
2M

0
0

u2;i;jþ1 � u2;i;j

0B@
1CA:

8>>>>>>>><>>>>>>>>:
ð129Þ
The corrected fluxes (129) are deduced from (42) restricted to the case of linear wave equation (123). By taking bP ¼ I in (126)
and (127), we obtain
1
2
jbA1jðqiþ1;j � qi;jÞ ¼

a�
2M

1 0 0
0 1 0
0 0 0

0B@
1CAðqiþ1;j � qi;jÞ
and
1
2
jbA2jðqi;jþ1 � qi;jÞ ¼

a�
2M

1 0 0
0 0 0
0 0 1

0B@
1CAðqi;jþ1 � qi;jÞ:
Moreover, we have
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a�
2M

0
u1;iþ1;j � u1;i;j

0

0B@
1CA ¼ a�

2M

0 0 0
0 1 0
0 0 0

0B@
1CAðqiþ1;j � qi;jÞ
and
a�
2M

0
0

u2;i;jþ1 � u2;i;j

0B@
1CA ¼ a�

2M

0 0 0
0 0 0
0 0 1

0B@
1CAðqi;jþ1 � qi;jÞ:
Thus, scheme (124) (129) can be rewritten with
d
dt

qi;j þ bA1
qiþ1;j � qi�1;j

2Dx1
þ bA2

qi;jþ1 � qi;j�1

2Dx2
¼ � � � ¼ a�

2M
�

1 0 0
0 0 0
0 0 0

0B@
1CAqiþ1;j �2qi;j þ qi�1;j

Dx1
þ

1 0 0
0 0 0
0 0 0

0B@
1CAqi;jþ1 �2qi;j þ qi;j�1

Dx2

264
375:

ð130Þ
We conclude by noting that the first-order modified equation associated to scheme (130) is given by (61) where Bjq is de-
fined with (90).

References

[1] P.L. Roe, Approximate Riemann solvers, parameter vectors and difference schemes, J. Comp. Phys. 43 (1981) 357–372.
[2] J.-M. Massella, I. Faille, T. Gallouët, On an approximate Godunov scheme, Int. J. Comput. Fluid. Dyn. 12 (1999) 133–149.
[3] T. Buffard, T. Gallouët, J.-M. Hérard, A sequel to a rough Godunov scheme: application to real gases, Comput. Fluids 29 (2000) 813–847.
[4] F. Beux, M.V. Salvetti, E. Sinibaldi, A preconditioned implicit Roe’s scheme for barotropic flows: towards simulation of cavitation phenomena, Technical

Report 4891, INRIA, 2003.
[5] S. Clerc, Numerical simulation of the homogeneous equilibrium model for two-phase flow, J. Comp. Phys. 161 (2000) 354–375.
[6] F. Dauvergne, J.-M. Ghidaglia, F. Pascal, J.-M. Rovarch, Renormalization of the numerical diffusion for an upwind finite volume method. Application to

the simulation of Kelvin–Helmholtz instability, in: R. Eymard, J.-M. Hérard (Eds.), Proceedings of the Fifth International Symposium on Finite Volumes
for Complex Applications, Wiley, 2008, pp. 321–328.

[7] H. Guillard, C. Viozat, On the behavior of upwind schemes in the low Mach number limit, Comput. Fluids 28 (1999) 63–86.
[8] H. Guillard, A. Murrone, On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes, Comput. Fluids 33 (2004) 655–

675.
[9] H. Guillard, A. Murrone, Behavior of upwind scheme in the low Mach number limit: III. Preconditioned dissipation for a five equation two phase model,

Comput. Fluids 37 (10) (2008) 1209–1224.
[10] H. Paillère, C. Viozat, A. Kumbaro, I. Toumi, Comparison of low Mach number models for natural convection problems, Heat and Mass Transfer 36

(2000) 567–573.
[11] G. Volpe, Performance of compressible flow codes at low Mach number, AIAA J. 31 (1) (1993) 49–56.
[12] M.-S. Liou, A sequel to AUSM: AUSM+, Part II: AUSM+-up for all speeds, J. Comp. Phys. 214 (1) (2006) 137–170.
[13] M. Sabanca, G. Brenner, N. Alemdarog�lu, Improvements to compressible Euler methods for low-Mach number flows, Int. J. Numer. Meth. Fluids 34

(2000) 167–185.
[14] E. Turkel, Preconditioned methods for solving the incompressible and low speed compressible equations, J. Comp. Phys. 72 (1987) 277–298.
[15] E. Turkel, Review of preconditioning methods for fluid dynamics, Appl. Numer. Math. 12 (1993) 257–284.
[16] I. Mary, P. Sagaut, Large Eddy simulation of flow around an airfoil near stall, AIAA J. 40 (6) (2002) 1139–1145.
[17] X.-S. Li, C.-W. Gu, An all-speed Roe-type scheme and its asymptotic analysis of low Mach number behaviour, J. Comp. Phys. 227 (2008) 5144–5159.
[18] X.-S. Li, C.-W. Gu, J.-Z. Xu, Development of Roe-type scheme for all-speed flows based on preconditioning method, Comput. Fluids 38 (2009) 810–817.
[19] S. Schochet, Fast singular limits of hyperbolic PDEs, J. Differ. Eqs. 114 (1994) 476–512.
[20] B. Perthame, Boltzmann type schemes for the gas dynamics and the entropy property, SIAM J. Num. Anal. 27 (1990) 1405–1421.
[21] R. Eymard, R. Herbin, J.-C. Latché, On a stabilized colocated finite volume scheme for the Stokes problem, Math. Model. Numer. Anal. 40 (3) (2006) 501–

527.
[22] A. Majda, in: Springer-Verlag (Ed.), Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical

Sciences Series, Wiley, New York, 1984, pp. 30–80.
[23] F. Boyer, P. Fabrie, in: Éléments d’analyse pour l’étude de quelques modèles d’écoulements de fluides visqueux incompressibles, Mathématiques &

Applications, Springer, French, 2006 (Chapter 2).
[24] M.L. Minion, A projection method for locally refined grids, J. Comp. Phys. 127 (1996) 158–178.
[25] E. Godlewski, P.-A. Raviart, in: J. Mardsen, L. Sirovich, F. John (Eds.), Numerical Approximation of Hyperbolic Systems of Conservation Laws, vol. 118,

Springer-Verlag, New York, 1996, pp. 215–220.
[26] B.J.R. Thornber, D. Drikakis, Numerical dissipation of upwind schemes in low Mach flow, Int. J. Numer. Meth. Fluids 56 (2008) 1535–1541.
[27] R.D. Richtmyer, K.W. Morton, in: Krieger (Ed.), Difference Methods for Initial-Value Problems, second ed., 1994.
[28] S. Dellacherie, Checkerboard modes and wave equation, in: Proceedings of the 18th Conference on Scientific Computing, Podbanske, Slovakia, 2009, pp.

71–80.
[29] A. Beccantini, Colella–Glaz splitting scheme for thermally perfect gases, in: E.F. Toro (Ed.), Godunov Methods: Theory and Application, Kluwer

Academic/Plenum Publishers, New York, 2001, pp. 89–95.
[30] P. Colella, H. Glaz, Efficient solution algorithms for the Riemann problem for real gases, J. Comp. Phys. 59 (1985) 264–289.
[31] P. Birken, A. Meister, Stability of preconditioned finite volume schemes at low Mach numbers, BIT Numer. Math. 45 (3) (2005) 463–480.
[32] M.-S. Liou, A sequel to AUSM: AUSM+, J. Comp. Phys. 129 (2) (1996) 364–382.
[33] M.-S. Liou, C.J. Steffen, A new flux splitting scheme, J. Comp. Phys. 107 (1) (1993) 23–39.
[34] F. Brezzi, J. Pitkäranta, On the Stabilization of Finite Element Approximation of the Stokes Equation, in: W. Hackbusch (Ed.), Efficient Solutions of

Elliptic Systems, Notes on Numerical Fluid Mechanics, vol. 10, 1984, pp.11–19.
[35] S. Dellacherie, P. Omnes, F. Rieper, The influence of cell geometry on the Godunov scheme applied to the linear wave equation, submitted for

publication.
[36] F. Rieper, Influence of cell geometry on the behaviour of the first-order roe scheme in the low Mach number regime, in: R. Eymard, J.-M. Hérard (Eds.),

Finite Volumes for Complex Applications V, Wiley, 2008, pp. 625–632.



1016 S. Dellacherie / Journal of Computational Physics 229 (2010) 978–1016
[37] F. Rieper, G. Bader, The influence of cell geometry on the accuracy of upwind schemes in the low Mach number regime, J. Comp. Phys. 228 (8) (2009)
2918–2933.
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